
pgl
Release 1.0.1

PaddlePaddle

Feb 03, 2021

INTRODUCTION

1 Highlight: Efficiency - Support Scatter-Gather and LodTensor Message Passing 3

2 Highlight: Flexibility - Natively Support Heterogeneous Graph Learning 5

3 Large-Scale: Support distributed graph storage and distributed training algorithms 7

4 Model Zoo 9

5 System requirements 11

6 Installation 13

7 The Team 15

8 License 17

9 Paddle Graph Learning (PGL) 19

10 Quick Start 23

11 The Team 73

12 License 75

Python Module Index 77

Index 79

i

ii

pgl, Release 1.0.1

Paddle Graph Learning (PGL) is an efficient and flexible graph learning framework based on PaddlePaddle.

The newly released PGL supports heterogeneous graph learning on both walk based paradigm and message-passing
based paradigm by providing MetaPath sampling and Message Passing mechanism on heterogeneous graph. Further-
mor, The newly released PGL also support distributed graph storage and some distributed training algorithms, such as
distributed deep walk and distributed graphsage. Combined with the PaddlePaddle deep learning framework, we are
able to support both graph representation learning models and graph neural networks, and thus our framework has a
wide range of graph-based applications.

INTRODUCTION 1

https://github.com/PaddlePaddle/Paddle

pgl, Release 1.0.1

2 INTRODUCTION

CHAPTER

ONE

HIGHLIGHT: EFFICIENCY - SUPPORT SCATTER-GATHER AND
LODTENSOR MESSAGE PASSING

One of the most important benefits of graph neural networks compared to other models is the ability to use node-to-
node connectivity information, but coding the communication between nodes is very cumbersome. At PGL we adopt
Message Passing Paradigm similar to DGL to help to build a customize graph neural network easily. Users only need
to write send and recv functions to easily implement a simple GCN. As shown in the following figure, for the first
step the send function is defined on the edges of the graph, and the user can customize the send function 𝜑𝑒 to send the
message from the source to the target node. For the second step, the recv function 𝜑𝑣 is responsible for aggregating ⊕
messages together from different sources.

As shown in the left of the following figure, to adapt general user-defined message aggregate functions, DGL uses the
degree bucketing method to combine nodes with the same degree into a batch and then apply an aggregate function ⊕
on each batch serially. For our PGL UDF aggregate function, we organize the message as a LodTensor in PaddlePaddle
taking the message as variable length sequences. And we utilize the features of LodTensor in Paddle to obtain fast
parallel aggregation.

Users only need to call the sequence_ops functions provided by Paddle to easily implement efficient message
aggregation. For examples, using sequence_pool to sum the neighbor message.

import paddle.fluid as fluid
def recv(msg):

return fluid.layers.sequence_pool(msg, "sum")

Although DGL does some kernel fusion optimization for general sum, max and other aggregate functions with scatter-
gather. For complex user-defined functions with degree bucketing algorithm, the serial execution for each degree
bucket cannot take full advantage of the performance improvement provided by GPU. However, operations on the
PGL LodTensor-based message is performed in parallel, which can fully utilize GPU parallel optimization. In our
experiments, PGL can reach up to 13 times the speed of DGL with complex user-defined functions. Even without
scatter-gather optimization, PGL still has excellent performance. Of course, we still provide build-in scatter-optimized
message aggregation functions.

1.1 Performance

We test all the following GNN algorithms with Tesla V100-SXM2-16G running for 200 epochs to get average speeds.
And we report the accuracy on test dataset without early stoppping.

3

http://www.paddlepaddle.org/documentation/docs/en/1.4/user_guides/howto/basic_concept/lod_tensor_en.html
https://github.com/PaddlePaddle/Paddle

pgl, Release 1.0.1

Dataset Model PGL Accuracy PGL speed (epoch time) DGL 0.3.0 speed (epoch time)
Cora GCN 81.75% 0.0047s 0.0045s
Cora GAT 83.5% 0.0119s 0.0141s
Pubmed GCN 79.2% 0.0049s 0.0051s
Pubmed GAT 77% 0.0193s 0.0144s
Citeseer GCN 70.2% 0.0045 0.0046s
Citeseer GAT 68.8% 0.0124s 0.0139s

If we use complex user-defined aggregation like GraphSAGE-LSTM that aggregates neighbor features with LSTM
ignoring the order of recieved messages, the optimized message-passing in DGL will be forced to degenerate into de-
gree bucketing scheme. The speed performance will be much slower than the one implemented in PGL. Performances
may be various with different scale of the graph, in our experiments, PGL can reach up to 13 times the speed of DGL.

Dataset PGL speed (epoch time) DGL 0.3.0 speed (epoch time) Speed up
Cora 0.0186s 0.1638s 8.80x
Pubmed 0.0388s 0.5275s 13.59x
Citeseer 0.0150s 0.1278s 8.52x

4 Chapter 1. Highlight: Efficiency - Support Scatter-Gather and LodTensor Message Passing

https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf

CHAPTER

TWO

HIGHLIGHT: FLEXIBILITY - NATIVELY SUPPORT HETEROGENEOUS
GRAPH LEARNING

Graph can conveniently represent the relation between things in the real world, but the categories of things and the
relation between things are various. Therefore, in the heterogeneous graph, we need to distinguish the node types and
edge types in the graph network. PGL models heterogeneous graphs that contain multiple node types and multiple
edge types, and can describe complex connections between different types.

2.1 Support meta path walk sampling on heterogeneous graph

The left side of the figure above describes a shopping social network. The nodes above have two categories of users
and goods, and the relations between users and users, users and goods, and goods and goods. The right of the above
figure is a simple sampling process of MetaPath. When you input any MetaPath as UPU (user-product-user), you will
find the following results

Then on this basis, and introducing word2vec and other methods to support learning metapath2vec and other algo-
rithms of heterogeneous graph representation.

2.2 Support Message Passing mechanism on heterogeneous graph

Because of the different node types on the heterogeneous graph, the message delivery is also different. As shown on
the left, it has five neighbors, belonging to two different node types. As shown on the right of the figure above, nodes
belonging to different types need to be aggregated separately during message delivery, and then merged into the final
message to update the target node. On this basis, PGL supports heterogeneous graph algorithms based on message
passing, such as GATNE and other algorithms.

5

pgl, Release 1.0.1

6 Chapter 2. Highlight: Flexibility - Natively Support Heterogeneous Graph Learning

CHAPTER

THREE

LARGE-SCALE: SUPPORT DISTRIBUTED GRAPH STORAGE AND
DISTRIBUTED TRAINING ALGORITHMS

In most cases of large-scale graph learning, we need distributed graph storage and distributed training support. As
shown in the following figure, PGL provided a general solution of large-scale training, we adopted PaddleFleet as
our distributed parameter servers, which supports large scale distributed embeddings and a lightweighted distributed
storage engine so tcan easily set up a large scale distributed training algorithm with MPI clusters.

7

https://github.com/PaddlePaddle/Fleet

pgl, Release 1.0.1

8 Chapter 3. Large-Scale: Support distributed graph storage and distributed training algorithms

CHAPTER

FOUR

MODEL ZOO

The following are 13 graph learning models that have been implemented in the framework.

Model feature
GCN Graph Convolutional Neural Networks
GAT Graph Attention Network
GraphSage Large-scale graph convolution network based on neighborhood sampling
unSup-GraphSage Unsupervised GraphSAGE
LINE Representation learning based on first-order and second-order neighbors
DeepWalk Representation learning by DFS random walk
MetaPath2Vec Representation learning based on metapath
Node2Vec The representation learning Combined with DFS and BFS
Struct2Vec Representation learning based on structural similarity
SGC Simplified graph convolution neural network
GES The graph represents learning method with node features
DGI Unsupervised representation learning based on graph convolution network
GATNE Representation Learning of Heterogeneous Graph based on MessagePassing

The above models consists of three parts, namely, graph representation learning, graph neural network and heteroge-
neous graph learning, which are also divided into graph representation learning and graph neural network.

9

examples/gcn_examples.html
examples/gat_examples.html
examples/graphsage_examples.html
examples/unsup_graphsage_examples.html
examples/line_examples.html
examples/distribute_deepwalk_examples.html
examples/metapath2vec_examples.html
examples/node2vec_examples.html
examples/strucvec_examples.html
examples/sgc_examples.html
examples/ges_examples.html
examples/dgi_examples.html
examples/gatne_examples.html

pgl, Release 1.0.1

10 Chapter 4. Model Zoo

CHAPTER

FIVE

SYSTEM REQUIREMENTS

PGL requires:

• paddle >= 1.6

• cython

PGL supports both Python 2 & 3

11

pgl, Release 1.0.1

12 Chapter 5. System requirements

CHAPTER

SIX

INSTALLATION

You can simply install it via pip.

pip install pgl

13

pgl, Release 1.0.1

14 Chapter 6. Installation

CHAPTER

SEVEN

THE TEAM

PGL is developed and maintained by NLP and Paddle Teams at Baidu

15

pgl, Release 1.0.1

16 Chapter 7. The Team

CHAPTER

EIGHT

LICENSE

PGL uses Apache License 2.0.

17

pgl, Release 1.0.1

18 Chapter 8. License

CHAPTER

NINE

PADDLE GRAPH LEARNING (PGL)

Paddle Graph Learning (PGL) is an efficient and flexible graph learning framework based on PaddlePaddle.

The newly released PGL supports heterogeneous graph learning on both walk based paradigm and message-passing
based paradigm by providing MetaPath sampling and Message Passing mechanism on heterogeneous graph. Further-
mor, The newly released PGL also support distributed graph storage and some distributed training algorithms, such as
distributed deep walk and distributed graphsage. Combined with the PaddlePaddle deep learning framework, we are
able to support both graph representation learning models and graph neural networks, and thus our framework has a
wide range of graph-based applications.

9.1 Highlight: Efficiency - Support Scatter-Gather and LodTensor
Message Passing

One of the most important benefits of graph neural networks compared to other models is the ability to use node-to-
node connectivity information, but coding the communication between nodes is very cumbersome. At PGL we adopt
Message Passing Paradigm similar to DGL to help to build a customize graph neural network easily. Users only need
to write send and recv functions to easily implement a simple GCN. As shown in the following figure, for the first
step the send function is defined on the edges of the graph, and the user can customize the send function 𝜑𝑒 to send the
message from the source to the target node. For the second step, the recv function 𝜑𝑣 is responsible for aggregating ⊕
messages together from different sources.

As shown in the left of the following figure, to adapt general user-defined message aggregate functions, DGL uses the
degree bucketing method to combine nodes with the same degree into a batch and then apply an aggregate function ⊕
on each batch serially. For our PGL UDF aggregate function, we organize the message as a LodTensor in PaddlePaddle
taking the message as variable length sequences. And we utilize the features of LodTensor in Paddle to obtain fast
parallel aggregation.

Users only need to call the sequence_ops functions provided by Paddle to easily implement efficient message
aggregation. For examples, using sequence_pool to sum the neighbor message.

import paddle.fluid as fluid
def recv(msg):

return fluid.layers.sequence_pool(msg, "sum")

Although DGL does some kernel fusion optimization for general sum, max and other aggregate functions with scatter-
gather. For complex user-defined functions with degree bucketing algorithm, the serial execution for each degree
bucket cannot take full advantage of the performance improvement provided by GPU. However, operations on the
PGL LodTensor-based message is performed in parallel, which can fully utilize GPU parallel optimization. In our
experiments, PGL can reach up to 13 times the speed of DGL with complex user-defined functions. Even without
scatter-gather optimization, PGL still has excellent performance. Of course, we still provide build-in scatter-optimized
message aggregation functions.

19

https://github.com/PaddlePaddle/Paddle
http://www.paddlepaddle.org/documentation/docs/en/1.4/user_guides/howto/basic_concept/lod_tensor_en.html
https://github.com/PaddlePaddle/Paddle

pgl, Release 1.0.1

9.1.1 Performance

We test all the following GNN algorithms with Tesla V100-SXM2-16G running for 200 epochs to get average speeds.
And we report the accuracy on test dataset without early stoppping.

Dataset Model PGL Accuracy PGL speed (epoch time) DGL 0.3.0 speed (epoch time)
Cora GCN 81.75% 0.0047s 0.0045s
Cora GAT 83.5% 0.0119s 0.0141s
Pubmed GCN 79.2% 0.0049s 0.0051s
Pubmed GAT 77% 0.0193s 0.0144s
Citeseer GCN 70.2% 0.0045 0.0046s
Citeseer GAT 68.8% 0.0124s 0.0139s

If we use complex user-defined aggregation like GraphSAGE-LSTM that aggregates neighbor features with LSTM
ignoring the order of recieved messages, the optimized message-passing in DGL will be forced to degenerate into de-
gree bucketing scheme. The speed performance will be much slower than the one implemented in PGL. Performances
may be various with different scale of the graph, in our experiments, PGL can reach up to 13 times the speed of DGL.

Dataset PGL speed (epoch time) DGL 0.3.0 speed (epoch time) Speed up
Cora 0.0186s 0.1638s 8.80x
Pubmed 0.0388s 0.5275s 13.59x
Citeseer 0.0150s 0.1278s 8.52x

9.2 Highlight: Flexibility - Natively Support Heterogeneous Graph
Learning

Graph can conveniently represent the relation between things in the real world, but the categories of things and the
relation between things are various. Therefore, in the heterogeneous graph, we need to distinguish the node types and
edge types in the graph network. PGL models heterogeneous graphs that contain multiple node types and multiple
edge types, and can describe complex connections between different types.

9.2.1 Support meta path walk sampling on heterogeneous graph

The left side of the figure above describes a shopping social network. The nodes above have two categories of users
and goods, and the relations between users and users, users and goods, and goods and goods. The right of the above
figure is a simple sampling process of MetaPath. When you input any MetaPath as UPU (user-product-user), you will
find the following results

Then on this basis, and introducing word2vec and other methods to support learning metapath2vec and other algo-
rithms of heterogeneous graph representation.

9.2.2 Support Message Passing mechanism on heterogeneous graph

Because of the different node types on the heterogeneous graph, the message delivery is also different. As shown on
the left, it has five neighbors, belonging to two different node types. As shown on the right of the figure above, nodes
belonging to different types need to be aggregated separately during message delivery, and then merged into the final
message to update the target node. On this basis, PGL supports heterogeneous graph algorithms based on message
passing, such as GATNE and other algorithms.

20 Chapter 9. Paddle Graph Learning (PGL)

https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf

pgl, Release 1.0.1

9.3 Large-Scale: Support distributed graph storage and distributed
training algorithms

In most cases of large-scale graph learning, we need distributed graph storage and distributed training support. As
shown in the following figure, PGL provided a general solution of large-scale training, we adopted PaddleFleet as
our distributed parameter servers, which supports large scale distributed embeddings and a lightweighted distributed
storage engine so tcan easily set up a large scale distributed training algorithm with MPI clusters.

9.4 Model Zoo

The following are 13 graph learning models that have been implemented in the framework.

Model feature
GCN Graph Convolutional Neural Networks
GAT Graph Attention Network
GraphSage Large-scale graph convolution network based on neighborhood sampling
unSup-GraphSage Unsupervised GraphSAGE
LINE Representation learning based on first-order and second-order neighbors
DeepWalk Representation learning by DFS random walk
MetaPath2Vec Representation learning based on metapath
Node2Vec The representation learning Combined with DFS and BFS
Struct2Vec Representation learning based on structural similarity
SGC Simplified graph convolution neural network
GES The graph represents learning method with node features
DGI Unsupervised representation learning based on graph convolution network
GATNE Representation Learning of Heterogeneous Graph based on MessagePassing

The above models consists of three parts, namely, graph representation learning, graph neural network and heteroge-
neous graph learning, which are also divided into graph representation learning and graph neural network.

9.5 System requirements

PGL requires:

• paddle >= 1.6

• cython

PGL supports both Python 2 & 3

9.6 Installation

You can simply install it via pip.

pip install pgl

9.3. Large-Scale: Support distributed graph storage and distributed training algorithms 21

https://github.com/PaddlePaddle/Fleet
examples/gcn_examples.html
examples/gat_examples.html
examples/graphsage_examples.html
examples/unsup_graphsage_examples.html
examples/line_examples.html
examples/distribute_deepwalk_examples.html
examples/metapath2vec_examples.html
examples/node2vec_examples.html
examples/strucvec_examples.html
examples/sgc_examples.html
examples/ges_examples.html
examples/dgi_examples.html
examples/gatne_examples.html

pgl, Release 1.0.1

9.7 The Team

PGL is developed and maintained by NLP and Paddle Teams at Baidu

9.8 License

PGL uses Apache License 2.0.

22 Chapter 9. Paddle Graph Learning (PGL)

CHAPTER

TEN

QUICK START

10.1 Quick Start Instructions

10.1.1 Install PGL

To install Paddle Graph Learning, we need the following packages.

paddlepaddle >= 1.6
cython

We can simply install pgl by pip.

pip install pgl

10.1.2 Step 1: using PGL to create a graph

Suppose we have a graph with 10 nodes and 14 edges as shown in the following figure:

23

pgl, Release 1.0.1

Our purpose is to train a graph neural network to classify yellow and green nodes. So we can create this graph in such
way:

import pgl
from pgl import graph # import pgl module
import numpy as np

def build_graph():
define the number of nodes; we can use number to represent every node
num_node = 10
add edges, we represent all edges as a list of tuple (src, dst)
edge_list = [(2, 0), (2, 1), (3, 1),(4, 0), (5, 0),

(6, 0), (6, 4), (6, 5), (7, 0), (7, 1),
(7, 2), (7, 3), (8, 0), (9, 7)]

Each node can be represented by a d-dimensional feature vector, here for simple,
→˓ the feature vectors are randomly generated.

d = 16
feature = np.random.randn(num_node, d).astype("float32")
each edge has it own weight
edge_feature = np.random.randn(len(edge_list), 1).astype("float32")

create a graph
g = graph.Graph(num_nodes = num_node,

edges = edge_list,
node_feat = {'feature':feature},
edge_feat ={'edge_feature': edge_feature})

return g

create a graph object for saving graph data

(continues on next page)

24 Chapter 10. Quick Start

images/quick_start_graph.png

pgl, Release 1.0.1

(continued from previous page)

g = build_graph()

After creating a graph in PGL, we can print out some information in the graph.

print('There are %d nodes in the graph.'%g.num_nodes)
print('There are %d edges in the graph.'%g.num_edges)

Out:
There are 10 nodes in the graph.
There are 14 edges in the graph.

Currently our PGL is developed based on static computational mode of paddle (we’ll support dynamic computational
model later). We need to build model upon a virtual data holder. GraphWrapper provide a virtual graph structure that
users can build deep learning models based on this virtual graph. And then feed real graph data to run the models.

import paddle.fluid as fluid

use_cuda = False
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

use GraphWrapper as a container for graph data to construct a graph neural network
gw = pgl.graph_wrapper.GraphWrapper(name='graph',

node_feat=g.node_feat_info(),
edge_feat=g.edge_feat_info())

10.1.3 Step 2: create a simple Graph Convolutional Network(GCN)

In this tutorial, we use a simple Graph Convolutional Network(GCN) developed by Kipf and Welling to perform node
classification. Here we use the simplest GCN structure. If readers want to know more about GCN, you can refer to the
original paper.

• In layer 𝑙each node 𝑢𝑙
𝑖 has a feature vector ℎ𝑙

𝑖;

• In every layer, the idea of GCN is that the feature vector ℎ𝑙+1
𝑖 of each node 𝑢𝑙+1

𝑖 in the next layer are obtained
by weighting the feature vectors of all the neighboring nodes and then go through a non-linear transformation.

In PGL, we can easily implement a GCN layer as follows:

define GCN layer function
def gcn_layer(gw, nfeat, efeat, hidden_size, name, activation):

gw is a GraphWrapperfeature is the feature vectors of nodes

define message function
def send_func(src_feat, dst_feat, edge_feat):

In this tutorial, we return the feature vector of the source node as message
return src_feat['h'] * edge_feat['e']

define reduce function
def recv_func(feat):

we sum the feature vector of the source node
return fluid.layers.sequence_pool(feat, pool_type='sum')

trigger message to passing
msg = gw.send(send_func, nfeat_list=[('h', nfeat)], efeat_list=[('e', efeat)])
recv funciton receives message and trigger reduce funcition to handle message

(continues on next page)

10.1. Quick Start Instructions 25

https://arxiv.org/abs/1609.02907

pgl, Release 1.0.1

(continued from previous page)

output = gw.recv(msg, recv_func)
output = fluid.layers.fc(output,

size=hidden_size,
bias_attr=False,
act=activation,
name=name)

return output

After defining the GCN layer, we can construct a deeper GCN model with two GCN layers.

output = gcn_layer(gw, gw.node_feat['feature'], gw.edge_feat['edge_feature'],
hidden_size=8, name='gcn_layer_1', activation='relu')

output = gcn_layer(gw, output, gw.edge_feat['edge_feature'],
hidden_size=1, name='gcn_layer_2', activation=None)

10.1.4 Step 3: data preprocessing

Since we implement a node binary classifier, we can use 0 and 1 to represent two classes respectively.

y = [0,1,1,1,0,0,0,1,0,1]
label = np.array(y, dtype="float32")
label = np.expand_dims(label, -1)

10.1.5 Step 4: training program

The training process of GCN is the same as that of other paddle-based models.

• First we create a loss function.

• Then we create a optimizer.

• Finally, we create a executor and train the model.

create a label layer as a container
node_label = fluid.layers.data("node_label", shape=[None, 1],

dtype="float32", append_batch_size=False)

using cross-entropy with sigmoid layer as the loss function
loss = fluid.layers.sigmoid_cross_entropy_with_logits(x=output, label=node_label)

calculate the mean loss
loss = fluid.layers.mean(loss)

choose the Adam optimizer and set the learning rate to be 0.01
adam = fluid.optimizer.Adam(learning_rate=0.01)
adam.minimize(loss)

create the executor
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
feed_dict = gw.to_feed(g) # gets graph data

for epoch in range(30):
feed_dict['node_label'] = label

(continues on next page)

26 Chapter 10. Quick Start

pgl, Release 1.0.1

(continued from previous page)

train_loss = exe.run(fluid.default_main_program(),
feed=feed_dict,
fetch_list=[loss],
return_numpy=True)

print('Epoch %d | Loss: %f'%(epoch, train_loss[0]))

10.2 Quick Start with Heterogenous Graph

10.2.1 Install PGL

To install Paddle Graph Learning, we need the following packages.

paddlepaddle >= 1.6
cython

We can simply install pgl by pip.

pip install pgl

10.2.2 Introduction

In real world, there exists many graphs contain multiple types of nodes and edges, which we call them Heterogeneous
Graphs. Obviously, heterogenous graphs are more complex than homogeneous graphs.

To deal with such heterogeneous graphs, PGL develops a graph framework to support graph neural network computa-
tions and meta-path-based sampling on heterogenous graph.

The goal of this tutorial:

• example of heterogenous graph data;

• Understand how PGL supports computations in heterogenous graph;

• Using PGL to implement a simple heterogenous graph neural network model to classfiy a particular type of node
in a heterogenous graph network.

10.2.3 Example of heterogenous graph

There are a lot of graph data that consists of edges and nodes of multiple types. For example, e-commerce network is
very common heterogenous graph in real world. It contains at least two types of nodes (user and item) and two types
of edges (buy and click).

The following figure depicts several users click or buy some items. This graph has two types of nodes corresponding
to “user” and “item”. It also contain two types of edge “buy” and “click”.

10.2. Quick Start with Heterogenous Graph 27

pgl, Release 1.0.1

10.2.4 Creating a heterogenous graph with PGL

In heterogenous graph, there exists multiple edges, so we should distinguish them. In PGL, the edges are built in
below format:

edges = {
'click': [(0, 4), (0, 7), (1, 6), (2, 5), (3, 6)],
'buy': [(0, 5), (1, 4), (1, 6), (2, 7), (3, 5)],

}

In heterogenous graph, nodes are also of different types. Therefore, you need to mark the type of each node, the format
of the node type is as follows:

node_types = [(0, 'user'), (1, 'user'), (2, 'user'), (3, 'user'), (4, 'item'),
(5, 'item'),(6, 'item'), (7, 'item')]

Because of the different types of edges, edge features also need to be separated by different types.

import numpy as np

num_nodes = len(node_types)

node_features = {'features': np.random.randn(num_nodes, 8).astype("float32")}

edge_num_list = []
for edge_type in edges:

(continues on next page)

28 Chapter 10. Quick Start

images/heter_graph_introduction.png

pgl, Release 1.0.1

(continued from previous page)

edge_num_list.append(len(edges[edge_type]))

edge_features = {
'click': {'h': np.random.randn(edge_num_list[0], 4)},
'buy': {'h':np.random.randn(edge_num_list[1], 4)},

}

Now, we can build a heterogenous graph by using PGL.

import paddle.fluid as fluid
import paddle.fluid.layers as fl
import pgl
from pgl import heter_graph
from pgl import heter_graph_wrapper

g = heter_graph.HeterGraph(num_nodes=num_nodes,
edges=edges,
node_types=node_types,
node_feat=node_features,
edge_feat=edge_features)

In PGL, we need to use graph_wrapper as a container for graph data, so here we need to create a graph_wrapper for
each type of edge graph.

place = fluid.CPUPlace()

create a GraphWrapper as a container for graph data
gw = heter_graph_wrapper.HeterGraphWrapper(name='heter_graph',

edge_types = g.edge_types_info(),
node_feat=g.node_feat_info(),
edge_feat=g.edge_feat_info())

10.2.5 MessagePassing

After building the heterogeneous graph, we can easily carry out the message passing mode. In this case, we have two
different types of edges, so we can write a function in such way:

def message_passing(gw, edge_types, features, name=''):
def __message(src_feat, dst_feat, edge_feat):

return src_feat['h']
def __reduce(feat):

return fluid.layers.sequence_pool(feat, pool_type='sum')

assert len(edge_types) == len(features)
output = []
for i in range(len(edge_types)):

msg = gw[edge_types[i]].send(__message, nfeat_list=[('h', features[i])])
out = gw[edge_types[i]].recv(msg, __reduce)
output.append(out)

list of matrix
return output

edge_types = ['click', 'buy']
features = []

(continues on next page)

10.2. Quick Start with Heterogenous Graph 29

pgl, Release 1.0.1

(continued from previous page)

for edge_type in edge_types:
features.append(gw[edge_type].node_feat['features'])

output = message_passing(gw, edge_types, features)

output = fl.concat(input=output, axis=1)

output = fluid.layers.fc(output, size=4, bias_attr=False, act='relu', name='fc1')
logits = fluid.layers.fc(output, size=1, bias_attr=False, act=None, name='fc2')

10.2.6 data preprocessing

In this case, we implement a simple node classifier, we can use 0,1 to represent two classes.

y = [0,1,0,1,0,1,1,0]
label = np.array(y, dtype="float32").reshape(-1,1)

10.2.7 Setting up the training program

The training process of the heterogeneous graph node classification model is the same as the training of other
paddlepaddle-based models.

• First we build the loss function;

• Second, creating a optimizer;

• Finally, creating a executor and execute the training program.

node_label = fluid.layers.data("node_label", shape=[None, 1], dtype="float32", append_
→˓batch_size=False)

loss = fluid.layers.sigmoid_cross_entropy_with_logits(x=logits, label=node_label)

loss = fluid.layers.mean(loss)

adam = fluid.optimizer.Adam(learning_rate=0.01)
adam.minimize(loss)

exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
feed_dict = gw.to_feed(g)

for epoch in range(30):
feed_dict['node_label'] = label

train_loss = exe.run(fluid.default_main_program(), feed=feed_dict, fetch_
→˓list=[loss], return_numpy=True)

print('Epoch %d | Loss: %f'%(epoch, train_loss[0]))

30 Chapter 10. Quick Start

pgl, Release 1.0.1

10.3 GCN: Graph Convolutional Networks

Graph Convolutional Network (GCN) is a powerful neural network designed for machine learning on graphs. Based
on PGL, we reproduce GCN algorithms and reach the same level of indicators as the paper in citation network bench-
marks.

10.3.1 Simple example to build GCN

To build a gcn layer, one can use our pre-defined pgl.layers.gcn or just write a gcn layer with message passing
interface.

import paddle.fluid as fluid
def gcn_layer(graph_wrapper, node_feature, hidden_size, act):

def send_func(src_feat, dst_feat, edge_feat):
return src_feat["h"]

def recv_func(msg):
return fluid.layers.sequence_pool(msg, "sum")

message = graph_wrapper.send(send_func, nfeat_list=[("h", node_feature)])
output = graph_wrapper.recv(recv_func, message)
output = fluid.layers.fc(output, size=hidden_size, act=act)
return output

10.3.2 Datasets

The datasets contain three citation networks: CORA, PUBMED, CITESEER. The details for these three datasets can
be found in the paper.

10.3.3 Dependencies

• paddlepaddle>=1.6

• pgl

10.3.4 Performance

We train our models for 200 epochs and report the accuracy on the test dataset.

Dataset Accuracy
Cora ~81%
Pubmed ~79%
Citeseer ~71%

10.3.5 How to run

For examples, use gpu to train gcn on cora dataset.

python train.py --dataset cora --use_cuda

10.3. GCN: Graph Convolutional Networks 31

https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907

pgl, Release 1.0.1

Hyperparameters

• dataset: The citation dataset “cora”, “citeseer”, “pubmed”.

• use_cuda: Use gpu if assign use_cuda.

10.4 GAT: Graph Attention Networks

Graph Attention Networks (GAT) is a novel architectures that operate on graph-structured data, which leverages
masked self-attentional layers to address the shortcomings of prior methods based on graph convolutions or their
approximations. Based on PGL, we reproduce GAT algorithms and reach the same level of indicators as the paper in
citation network benchmarks.

10.4.1 Simple example to build single head GAT

To build a gat layer, one can use our pre-defined pgl.layers.gat or just write a gat layer with message passing
interface.

import paddle.fluid as fluid
def gat_layer(graph_wrapper, node_feature, hidden_size):

def send_func(src_feat, dst_feat, edge_feat):
logits = src_feat["a1"] + dst_feat["a2"]
logits = fluid.layers.leaky_relu(logits, alpha=0.2)
return {"logits": logits, "h": src_feat }

def recv_func(msg):
norm = fluid.layers.sequence_softmax(msg["logits"])
output = msg["h"] * norm
return output

h = fluid.layers.fc(node_feature, hidden_size, bias_attr=False, name="hidden")
a1 = fluid.layers.fc(node_feature, 1, name="a1_weight")
a2 = fluid.layers.fc(node_feature, 1, name="a2_weight")
message = graph_wrapper.send(send_func,

nfeat_list=[("h", h), ("a1", a1), ("a2", a2)])
output = graph_wrapper.recv(recv_func, message)
return output

10.4.2 Datasets

The datasets contain three citation networks: CORA, PUBMED, CITESEER. The details for these three datasets can
be found in the paper.

10.4.3 Dependencies

• paddlepaddle>=1.6

• pgl

32 Chapter 10. Quick Start

https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1609.02907

pgl, Release 1.0.1

10.4.4 Performance

We train our models for 200 epochs and report the accuracy on the test dataset.

Dataset Accuracy
Cora ~83%
Pubmed ~78%
Citeseer ~70%

10.4.5 How to run

For examples, use gpu to train gat on cora dataset.

python train.py --dataset cora --use_cuda

Hyperparameters

• dataset: The citation dataset “cora”, “citeseer”, “pubmed”.

• use_cuda: Use gpu if assign use_cuda.

10.5 Using StaticGraphWrapper for Speed Optimization

10.5.1 PGL Examples for GCN with StaticGraphWrapper

Graph Convolutional Network (GCN) is a powerful neural network designed for machine learning on graphs. Based
on PGL, we reproduce GCN algorithms and reach the same level of indicators as the paper in citation network bench-
marks.

However, different from the reproduction in examples/gcn, we use pgl.graph_wrapper.
StaticGraphWrapper to preload the graph data into gpu or cpu memories which achieves better performance on
speed.

Datasets

The datasets contain three citation networks: CORA, PUBMED, CITESEER. The details for these three datasets can
be found in the paper.

Dependencies

• paddlepaddle>=1.6

• pgl

10.5. Using StaticGraphWrapper for Speed Optimization 33

https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907

pgl, Release 1.0.1

Performance

We train our models for 200 epochs and report the accuracy on the test dataset.

Dataset Accuracy epoch time examples/gcn Improvement
Cora ~81% 0.0047s 0.0104s 2.21x
Pubmed ~79% 0.0049s 0.0154s 3.14x
Citeseer ~71% 0.0045s 0.0177s 3.93x

How to run

For examples, use gpu to train gcn on cora dataset.

python train.py --dataset cora --use_cuda

Hyperparameters

• dataset: The citation dataset “cora”, “citeseer”, “pubmed”.

• use_cuda: Use gpu if assign use_cuda.

10.5.2 PGL Examples for GAT with StaticGraphWrapper

Graph Attention Networks (GAT) is a novel architectures that operate on graph-structured data, which leverages
masked self-attentional layers to address the shortcomings of prior methods based on graph convolutions or their
approximations. Based on PGL, we reproduce GAT algorithms and reach the same level of indicators as the paper in
citation network benchmarks.

However, different from the reproduction in examples/gat, we use pgl.graph_wrapper.
StaticGraphWrapper to preload the graph data into gpu or cpu memories which achieves better performance on
speed.

Datasets

The datasets contain three citation networks: CORA, PUBMED, CITESEER. The details for these three datasets can
be found in the paper.

Dependencies

• paddlepaddle>=1.6

• pgl

Performance

We train our models for 200 epochs and report the accuracy on the test dataset.

34 Chapter 10. Quick Start

https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1609.02907

pgl, Release 1.0.1

Dataset Accuracy epoch time examples/gat Improvement
Cora ~83% 0.0119s 0.0175s 1.47x
Pubmed ~78% 0.0193s 0.0295s 1.53x
Citeseer ~70% 0.0124s 0.0253s 2.04x

How to run

For examples, use gpu to train gat on cora dataset.

python train.py --dataset cora --use_cuda

Hyperparameters

• dataset: The citation dataset “cora”, “citeseer”, “pubmed”.

• use_cuda: Use gpu if assign use_cuda.

10.6 node2vec: Scalable Feature Learning for Networks

Node2vec is an algorithmic framework for representational learning on graphs. Given any graph, it can learn contin-
uous feature representations for the nodes, which can then be used for various downstream machine learning tasks.
Based on PGL, we reproduce node2vec algorithms and reach the same level of indicators as the paper.

10.6.1 Datasets

The datasets contain two networks: BlogCatalog and Arxiv.

10.6.2 Dependencies

• paddlepaddle>=1.4

• pgl

10.6.3 How to run

For examples, use gpu to train gcn on cora dataset.

multiclass task example
python node2vec.py --use_cuda --dataset BlogCatalog --save_path ./tmp/node2vec_
→˓BlogCatalog/ --offline_learning --epoch 400

python multi_class.py --use_cuda --ckpt_path ./tmp/node2vec_BlogCatalog/paddle_model -
→˓-epoch 1000

link prediction task example
python node2vec.py --use_cuda --dataset ArXiv --save_path
./tmp/node2vec_ArXiv --offline_learning --epoch 10

(continues on next page)

10.6. node2vec: Scalable Feature Learning for Networks 35

https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf
http://socialcomputing.asu.edu/datasets/BlogCatalog3
http://snap.stanford.edu/data/ca-AstroPh.html

pgl, Release 1.0.1

(continued from previous page)

python link_predict.py --use_cuda --ckpt_path ./tmp/node2vec_ArXiv/paddle_model --
→˓epoch 400

10.6.4 Hyperparameters

• dataset: The citation dataset “BlogCatalog” and “ArXiv”.

• use_cuda: Use gpu if assign use_cuda.

Experiment results

Dataset model Task Metric PGL Result Reported Result
BlogCatalog deepwalk multi-label classification MacroF1 0.250 0.211
BlogCatalog node2vec multi-label classification MacroF1 0.262 0.258
ArXiv deepwalk link prediction AUC 0.9538 0.9340
ArXiv node2vec link prediction AUC 0.9541 0.9366

10.7 GraphSAGE: Inductive Representation Learning on Large
Graphs

GraphSAGE is a general inductive framework that leverages node feature information (e.g., text attributes) to effi-
ciently generate node embeddings for previously unseen data. Instead of training individual embeddings for each
node, GraphSAGE learns a function that generates embeddings by sampling and aggregating features from a node’s
local neighborhood. Based on PGL, we reproduce GraphSAGE algorithm and reach the same level of indicators as
the paper in Reddit Dataset. Besides, this is an example of subgraph sampling and training in PGL.

10.7.1 Datasets

The reddit dataset should be downloaded from the following links and placed in directory ./data. The details for
Reddit Dataset can be found here.

• reddit.npz https://drive.google.com/open?id=19SphVl_Oe8SJ1r87Hr5a6znx3nJu1F2J

• reddit_adj.npz: https://drive.google.com/open?id=174vb0Ws7Vxk_QTUtxqTgDHSQ4El4qDHt

10.7.2 Dependencies

• paddlepaddle>=1.6

• pgl

10.7.3 How to run

To train a GraphSAGE model on Reddit Dataset, you can just run

36 Chapter 10. Quick Start

https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf
https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf
https://drive.google.com/open?id=19SphVl_Oe8SJ1r87Hr5a6znx3nJu1F2J
https://drive.google.com/open?id=174vb0Ws7Vxk_QTUtxqTgDHSQ4El4qDHt

pgl, Release 1.0.1

python train.py --use_cuda --epoch 10 --graphsage_type graphsage_mean --normalize --
→˓symmetry

If you want to train a GraphSAGE model with multiple GPUs, you can just run

CUDA_VISIBLE_DEVICES=0,1 python train_multi.py --use_cuda --epoch 10 --graphsage_type
→˓graphsage_mean --normalize --symmetry --num_trainer 2

Hyperparameters

• epoch: Number of epochs default (10)

• use_cuda: Use gpu if assign use_cuda.

• graphsage_type: We support 4 aggregator types including “graphsage_mean”, “graphsage_maxpool”, “graph-
sage_meanpool” and “graphsage_lstm”.

• normalize: Normalize the input feature if assign normalize.

• sample_workers: The number of workers for multiprocessing subgraph sample.

• lr: Learning rate.

• symmetry: Make the edges symmetric if assign symmetry.

• batch_size: Batch size.

• samples_1: The max neighbors for the first hop neighbor sampling. (default: 25)

• samples_2: The max neighbors for the second hop neighbor sampling. (default: 10)

• hidden_size: The hidden size of the GraphSAGE models.

10.7.4 Performance

We train our models for 200 epochs and report the accuracy on the test dataset.

Aggregator Accuracy Reported in paper
Mean 95.70% 95.0%
Meanpool 95.60% 94.8%
Maxpool 94.95% 94.8%
LSTM 95.13% 95.4%

10.8 DGI: Deep Graph Infomax

Deep Graph Infomax (DGI) is a general approach for learning node representations within graph-structured data in an
unsupervised manner. DGI relies on maximizing mutual information between patch representations and corresponding
high-level summaries of graphs—both derived using established graph convolutional network architectures.

10.8.1 Datasets

The datasets contain three citation networks: CORA, PUBMED, CITESEER. The details for these three datasets can
be found in the paper.

10.8. DGI: Deep Graph Infomax 37

https://arxiv.org/abs/1809.10341
https://arxiv.org/abs/1609.02907

pgl, Release 1.0.1

10.8.2 Dependencies

• paddlepaddle>=1.6

• pgl

10.8.3 Performance

We use DGI to pretrain embeddings for each nodes. Then we fix the embedding to train a node classifier.

Dataset Accuracy
Cora ~81%
Pubmed ~77.6%
Citeseer ~71.3%

10.8.4 How to run

For examples, use gpu to train gcn on cora dataset.

python dgi.py --dataset cora --use_cuda
python train.py --dataset cora --use_cuda

Hyperparameters

• dataset: The citation dataset “cora”, “citeseer”, “pubmed”.

• use_cuda: Use gpu if assign use_cuda.

10.9 Distributed Deepwalk in PGL

Deepwalk is an algorithmic framework for representational learning on graphs. Given any graph, it can learn contin-
uous feature representations for the nodes, which can then be used for various downstream machine learning tasks.
Based on PGL, we reproduce distributed deepwalk algorithms and reach the same level of indicators as the paper.

10.9.1 Datasets

The datasets contain two networks: BlogCatalog.

10.9.2 Dependencies

• paddlepaddle>=1.6

• pgl>=1.0

38 Chapter 10. Quick Start

https://arxiv.org/pdf/1403.6652.pdf
http://socialcomputing.asu.edu/datasets/BlogCatalog3

pgl, Release 1.0.1

10.9.3 How to run

We adopt PaddlePaddle Fleet as our distributed training frameworks pgl_deepwalk.cfg is config file for deepwalk
hyperparameter and local_config is a config file for parameter servers. By default, we have 2 pservers and 2
trainers. We can use paddle.distributed.launch_ps to help you startup the parameter servers and model
trainers.

For examples, train deepwalk in distributed mode on BlogCataLog dataset.

train deepwalk in distributed mode.
python3 -m paddle.distributed.launch_ps --worker_num 2 --server_num 2 cluster_train.py

multiclass task example
python3 multi_class.py --use_cuda --ckpt_path ./model_path/4029 --epoch 1000

10.9.4 Hyperparameters

• dataset: The citation dataset “BlogCatalog”.

• hidden_size: Hidden size of the embedding.

• lr: Learning rate.

• neg_num: Number of negative samples.

• epoch: Number of training epoch.

Experiment results

Dataset model Task Metric PGL Result Reported Result
BlogCatalog distributed deepwalk multi-label classification MacroF1 0.233 0.211

10.10 Distribute GraphSAGE in PGL

GraphSAGE is a general inductive framework that leverages node feature information (e.g., text attributes) to effi-
ciently generate node embeddings for previously unseen data. Instead of training individual embeddings for each
node, GraphSAGE learns a function that generates embeddings by sampling and aggregating features from a node’s
local neighborhood. Based on PGL, we reproduce GraphSAGE algorithm and reach the same level of indicators as
the paper in Reddit Dataset. Besides, this is an example of subgraph sampling and training in PGL.

For purpose of high scalability, we use redis as distribute graph storage solution and training graphsage against redis
server.

10.10.1 Datasets(Quickstart)

The reddit dataset should be downloaded from reddit_adj.npz and reddit.npz. The details for Reddit Dataset can be
found here.

• reddit.npz: https://drive.google.com/open?id=19SphVl_Oe8SJ1r87Hr5a6znx3nJu1F2J

• reddit_adj.npz: https://drive.google.com/open?id=174vb0Ws7Vxk_QTUtxqTgDHSQ4El4qDHt

Download reddit.npz and reddit_adj.npz into data directory for further preprocessing.

10.10. Distribute GraphSAGE in PGL 39

https://github.com/PaddlePaddle/Fleet
https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf
https://drive.google.com/open?id=174vb0Ws7Vxk_QTUtxqTgDHSQ4El4qDHt
https://drive.google.com/open?id=19SphVl_Oe8SJ1r87Hr5a6znx3nJu1F2J
https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf
https://drive.google.com/open?id=19SphVl_Oe8SJ1r87Hr5a6znx3nJu1F2J
https://drive.google.com/open?id=174vb0Ws7Vxk_QTUtxqTgDHSQ4El4qDHt

pgl, Release 1.0.1

10.10.2 Dependencies

pip install -r requirements.txt

10.10.3 How to run

1. Preprocessing and start reddit data service

pushd ./redis_setup
/bin/bash ./before_hook.sh

popd

2. training GraphSAGE model

sh ./cloud_run.sh

10.11 GES: Graph Embedding with Side Information

Graph Embedding with Side Information is an algorithmic framework for representational learning on graphs. Given
any graph, it can learn continuous feature representations for the nodes, which can then be used for various downstream
machine learning tasks. Based on PGL, we reproduce ges algorithms.

10.11.1 Datasets

The datasets contain two networks: BlogCatalog.

10.11.2 Dependencies

• paddlepaddle>=1.6

• pgl>=1.0.0

10.11.3 How to run

For examples, train ges on cora dataset.

train deepwalk in distributed mode.
sh gpu_run.sh

10.11.4 Hyperparameters

• dataset: The citation dataset “BlogCatalog”.

• hidden_size: Hidden size of the embedding.

• lr: Learning rate.

40 Chapter 10. Quick Start

https://arxiv.org/pdf/1803.02349.pdf
http://socialcomputing.asu.edu/datasets/BlogCatalog3

pgl, Release 1.0.1

• neg_num: Number of negative samples.

• epoch: Number of training epoch.

10.12 LINE: Large-scale Information Network Embedding

LINE is an algorithmic framework for embedding very large-scale information networks. It is suitable to a variety of
networks including directed, undirected, binary or weighted edges. Based on PGL, we reproduce LINE algorithms
and reach the same level of indicators as the paper.

10.12.1 Datasets

Flickr network is a social network, which contains 1715256 nodes and 22613981 edges.

You can dowload data from here.

Flickr network contains four files:

• flickr-groupmemberships.txt.gz

• flickr-groups.txt.gz

• flickr-links.txt.gz

• flickr-users.txt.gz

After downloading the datauncompress them, let’s say, in ./data/flickr/ . Note that the current directory is the root
directory of LINE model.

Then you can run the below command to preprocess the data.

python data_process.py

Then it will produce three files in ./data/flickr/ directory:

• nodes.txt

• edges.txt

• nodes_label.txt

10.12.2 Dependencies

• paddlepaddle>=1.6

• pgl

10.12.3 How to run

For examples, use gpu to train LINE on Flickr dataset.

multiclass task example
python line.py --use_cuda --order first_order --data_path ./data/flickr/ --save_dir ./
→˓checkpoints/model/

python multi_class.py --ckpt_path ./checkpoints/model/model_epoch_20 --percent 0.5

10.12. LINE: Large-scale Information Network Embedding 41

http://www.www2015.it/documents/proceedings/proceedings/p1067.pdf
http://socialnetworks.mpi-sws.org/data-imc2007.html
http://socialnetworks.mpi-sws.org/data-imc2007.html

pgl, Release 1.0.1

10.12.4 Hyperparameters

• -use_cuda: Use gpu if assign use_cuda.

• -order: LINE with First_order Proximity or Second_order Proximity

• -percent: The percentage of data as training data

Experiment results

Dataset model Task Metric PGL Result Reported Result
Flickr LINE with first_order multi-label classification MacroF1 0.626 0.627
Flickr LINE with first_order multi-label classification MicroF1 0.637 0.639
Flickr LINE with second_order multi-label classification MacroF1 0.615 0.621
Flickr LINE with second_order multi-label classification MicroF1 0.630 0.635

10.13 SGC: Simplifying Graph Convolutional Networks

Simplifying Graph Convolutional Networks (SGC) is a powerful neural network designed for machine learning on
graphs. Based on PGL, we reproduce SGC algorithms and reach the same level of indicators as the paper in citation
network benchmarks.

10.13.1 Datasets

The datasets contain three citation networks: CORA, PUBMED, CITESEER. The details for these three datasets can
be found in the paper.

10.13.2 Dependencies

• paddlepaddle 1.5

• pgl

10.13.3 Performance

We train our models for 200 epochs and report the accuracy on the test dataset.

Dataset Accuracy Speed with paddle 1.5 (epoch time)
Cora 0.818 (paper: 0.810) 0.0015s
Pubmed 0.788 (paper: 0.789) 0.0015s
Citeseer 0.719 (paper: 0.719) 0.0015s

10.13.4 How to run

For examples, use gpu to train SGC on cora dataset.

python sgc.py --dataset cora --use_cuda

42 Chapter 10. Quick Start

https://arxiv.org/pdf/1902.07153.pdf
https://arxiv.org/abs/1609.02907

pgl, Release 1.0.1

Hyperparameters

• dataset: The citation dataset “cora”, “citeseer”, “pubmed”.

• use_cuda: Use gpu if assign use_cuda.

10.14 struc2vec: Learning Node Representations from Structural
Identity

Struc2vec is is a concept of symmetry in which network nodes are identified according to the network structure and
their relationship to other nodes. A novel and flexible framework for learning latent representations is proposed in the
paper of struc2vec. We reproduce Struc2vec algorithm in the PGL.

10.14.1 DataSet

The paper of use air-traffic network to valid algorithm of Struc2vec. The each edge in the dataset indicate that hav-
ing one flight between the airports. Using the the connection between the airports to predict the level of activity.
The following dataset will be used to valid the algorithm accuracy.Data collected from the Bureau of Transportation
Statistics2 from January to October, 2016. The network has 1,190 nodes, 13,599 edges (diameter is 8). Link

• usa-airports.edgelist

• labels-usa-airports.txt

10.14.2 Dependencies

If use want to use the struc2vec model in pgl, please install the gensim, pathos, fastdtw additional.

• paddlepaddle>=1.6

• pgl

• gensim

• pathos

• fastdtw

10.14.3 How to use

For examples, we want to train and valid the Struc2vec model on American airpot dataset

python struc2vec.py –edge_file data/usa-airports.edgelist –label_file data/labels-usa-airports.txt –train
True –valid True –opt2 True

10.14. struc2vec: Learning Node Representations from Structural Identity 43

https://arxiv.org/abs/1704.03165
https://www.transtats.bts.gov/

pgl, Release 1.0.1

10.14.4 Hyperparameters

Args Meaning
edge_file input file name for edges
label_file input file name for node label
emb_file input file name for node label
walk_depth The step3 for random walk
opt1 The flag to open optimization 1 to reduce time cost
opt2 The flag to open optimization 2 to reduce time cost
w2v_emb_size The dims of output the word2vec embedding
w2v_window_size The context length of word2vec
w2v_epoch The num of epoch to train the model.
train The flag to run the struc2vec algorithm to get the w2v embedding
valid The flag to use the w2v embedding to valid the classification result
num_class The num of class in classification model to be trained

10.14.5 Experiment results

Dataset Model Met-
ric

PGL Re-
sult

Paper repo Re-
sult

American airport
dataset

Struc2vec without time cost optimiza-
tion

ACC 0.6483 0.6340

American airport
dataset

Struc2vec with optimization 1 ACC 0.6466 0.6242

American airport
dataset

Struc2vec with optimization 2 ACC 0.6252 0.6241

American airport
dataset

Struc2vec with optimization1&2 ACC 0.6226 0.6083

10.15 GATNE: General Attributed Multiplex HeTerogeneous Network
Embedding

GATNE is a algorithms framework for embedding large-scale Attributed Multiplex Heterogeneous Networks(AMHN).
Given a heterogeneous graph, which consists of nodes and edges of multiple types, it can learn continuous feature
representations for every node. Based on PGL, we reproduce GATNE algorithm.

10.15.1 Datasets

YouTube dataset contains 2000 nodes, 1310617 edges and 5 edge types. And we use YouTube dataset for example.

You can dowload YouTube datasets from here

After downloading the data, put them, let’s say, in ./data/ . Note that the current directory is the root directory of
GATNE model. Then in ./data/youtube/ directory, there are three files:

• train.txt

• valid.txt

• test.txt

44 Chapter 10. Quick Start

https://arxiv.org/pdf/1905.01669.pdf
https://github.com/THUDM/GATNE/tree/master/data

pgl, Release 1.0.1

Then you can run the below command to preprocess the data.

python data_process.py --input_file ./data/youtube/train.txt --output_file ./data/
→˓youtube/nodes.txt

10.15.2 Dependencies

• paddlepaddle>=1.6

• pgl>=1.0.0

10.15.3 Hyperparameters

All the hyper parameters are saved in config.yaml file. So before training GATNE model, you can open the config.yaml
to modify the hyper parameters as you like.

for example, you can change the “use_cuda” to “True ” in order to use GPU for training or modify “data_path” to use
different dataset.

Some important hyper parameters in config.yaml:

• use_cuda: use GPU to train model

• data_path: the directory of dataset

• lr: learning rate

• neg_num: number of negatie samples.

• num_walks: number of walks started from each node

• walk_length: walk length

10.15.4 How to run

Then run the below command:

python main.py -c config.yaml

Experiment results

PGL result Reported result
AUC 84.83 84.61
PR 82.77 81.93
F1 76.98 76.83

10.16 metapath2vec: Scalable Representation Learning for Hetero-
geneous Networks

metapath2vec is a algorithm framework for representation learning in heterogeneous networks which contains multiple
types of nodes and links. Given a heterogeneous graph, metapath2vec algorithm first generates meta-path-based

10.16. metapath2vec: Scalable Representation Learning for Heterogeneous Networks 45

https://ericdongyx.github.io/papers/KDD17-dong-chawla-swami-metapath2vec.pdf

pgl, Release 1.0.1

random walks and then use skipgram model to train a language model. Based on PGL, we reproduce metapath2vec
algorithm.

10.16.1 Datasets

You can dowload datasets from here

We use the “aminer” data for example. After downloading the aminer data, put them, let’s say, in ./data/net_aminer/ .
We also need to put “label/” directory in ./data/.

10.16.2 Dependencies

• paddlepaddle>=1.6

• pgl>=1.0.0

10.16.3 Hyperparameters

All the hyper parameters are saved in config.yaml file. So before training, you can open the config.yaml to modify the
hyper parameters as you like.

for example, you can change the “use_cuda” to “True ” in order to use GPU for training or modify “data_path” to
specify the data you want.

Some important hyper parameters in config.yaml:

• use_cuda: use GPU to train model

• data_path: the directory of dataset that you want to load

• lr: learning rate

• neg_num: number of negative samples.

• num_walks: number of walks started from each node

• walk_length: walk length

• metapath: meta path scheme

10.16.4 Metapath randomwalk sampling

Before training, we should generate some metapath random walks to train skipgram model. we can run the below
command to produce metapath randomwalk data.

python sample.py -c config.yaml

10.16.5 Training and Testing

After finishing metapath randomwalk sampling, you can run the below command to train and test the model.

python main.py -c config.yaml

python multi_class.py --dataset ./data/out_aminer_CPAPC/author_label.txt --word2id ./
→˓checkpoints/train.metapath2vec/word2id.pkl --ckpt_path ./checkpoints/train.
→˓metapath2vec/model_epoch5/ (continues on next page)

46 Chapter 10. Quick Start

https://ericdongyx.github.io/metapath2vec/m2v.html

pgl, Release 1.0.1

(continued from previous page)

10.16.6 Experiment results

train_percent Metric PGL Result Reported Result
50% macro-F1 0.9249 0.9314
50% micro-F1 0.9283 0.9365

10.17 Unsupervised GraphSAGE in PGL

GraphSAGE is a general inductive framework that leverages node feature information (e.g., text attributes) to effi-
ciently generate node embeddings for previously unseen data. Instead of training individual embeddings for each
node, GraphSAGE learns a function that generates embeddings by sampling and aggregating features from a node’s
local neighborhood. Based on PGL, we reproduce GraphSAGE algorithm and reach the same level of indicators as
the paper in Reddit Dataset. Besides, this is an example of subgraph sampling and training in PGL. For purpose of
unsupervised learning, we use graph edges as positive samples for graphsage training.

10.17.1 Datasets(Quickstart)

The dataset ./sample.txt is handcrafted bigraph for quick demo purpose, which format is src \t dst.

10.17.2 Dependencies

- paddlepaddle>=1.6
- pgl

10.17.3 How to run

1. Training

python train.py --data_path ./sample.txt --num_nodes 2000 --phase train

2. Predicting

python train.py --data_path ./sample.txt --num_nodes 2000 --phase predict

The resulted node embedding is stored in emb.npy file, which latter can be loaded using np.load.

Hyperparameters

• epoch: Number of epochs default (1)

• use_cuda: Use gpu if assign use_cuda.

10.17. Unsupervised GraphSAGE in PGL 47

https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf

pgl, Release 1.0.1

• layer_type: We support 4 aggregator types including “graphsage_mean”, “graphsage_maxpool”, “graph-
sage_meanpool” and “graphsage_lstm”.

• sample_workers: The number of workers for multiprocessing subgraph sample.

• lr: Learning rate.

• batch_size: Batch size.

• samples: The max neighbors sampling rate for each hop. (default: [10, 10])

• num_layers: The number of layer for graph sampling. (default: 2)

• hidden_size: The hidden size of the GraphSAGE models.

• checkpoint. Path for model checkpoint at each epoch. (default: ‘model_ckpt’)

10.18 API Reference

10.18.1 pgl.graph module: Graph Storage

This package implement Graph structure for handling graph data.

class pgl.graph.Graph(num_nodes, edges=None, node_feat=None, edge_feat=None)
Bases: object

Implementation of graph structure in pgl.

This is a simple implementation of graph structure in pgl.

Parameters

• num_nodes – number of nodes in a graph

• edges – list of (u, v) tuples

• node_feat (optional) – a dict of numpy array as node features

• edge_feat (optional) – a dict of numpy array as edge features (should have consistent
order with edges)

Examples

import numpy as np
num_nodes = 5
edges = [(0, 1), (1, 2), (3, 4)]
feature = np.random.randn(5, 100)
edge_feature = np.random.randn(3, 100)
graph = Graph(num_nodes=num_nodes,

edges=edges,
node_feat={

"feature": feature
},
edge_feat={

"edge_feature": edge_feature
})

property adj_dst_index
Return an EdgeIndex object for dst.

48 Chapter 10. Quick Start

pgl, Release 1.0.1

property adj_src_index
Return an EdgeIndex object for src.

dump(path)

property edge_feat
Return a dictionary of edge features.

edge_feat_info()
Return the information of edge feature for GraphWrapper.

This function return the information of edge features. And this function is used to help constructing
GraphWrapper

Returns A list of tuple (name, shape, dtype) for all given edge feature.

Examples

import numpy as np
num_nodes = 5
edges = [(0, 1), (1, 2), (3, 4)]
feature = np.random.randn(3, 100)
graph = Graph(num_nodes=num_nodes,

edges=edges,
edge_feat={

"feature": feature
})

print(graph.edge_feat_info())

The output will be:

[("feature", [None, 100], "float32")]

property edges
Return all edges in numpy.ndarray with shape (num_edges, 2).

property graph_lod
Return Graph Lod Index for Paddle Computation

has_edges_between(u, v)
Check whether some edges is in graph.

Parameters

• u – a numpy.array of src nodes ID.

• v – a numpy.array of dst nodes ID.

Returns

A numpy.array of bool, with the same shape with u and v, exists[i] is True if (u[i], v[i])
is a edge in graph, Flase otherwise.

Return type exists

indegree(nodes=None)
Return the indegree of the given nodes

This function will return indegree of given nodes.

Parameters nodes – Return the indegree of given nodes, if nodes is None, return indegree for
all nodes

10.18. API Reference 49

pgl, Release 1.0.1

Returns A numpy.ndarray as the given nodes’ indegree.

node2vec_random_walk(nodes, max_depth, p=1.0, q=1.0)
Implement of node2vec stype random walk.

Reference paper: https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf.

Parameters

• nodes – Walk starting from nodes

• max_depth – Max walking depth

• p – Return parameter

• q – In-out parameter

Returns A list of walks.

node_batch_iter(batch_size, shuffle=True)
Node batch iterator

Iterate all node by batch.

Parameters

• batch_size – The batch size of each batch of nodes.

• shuffle – Whether shuffle the nodes.

Returns Batch iterator

property node_feat
Return a dictionary of node features.

node_feat_info()
Return the information of node feature for GraphWrapper.

This function return the information of node features. And this function is used to help constructing
GraphWrapper

Returns A list of tuple (name, shape, dtype) for all given node feature.

Examples

import numpy as np
num_nodes = 5
edges = [(0, 1), (1, 2), (3, 4)]
feature = np.random.randn(5, 100)
graph = Graph(num_nodes=num_nodes,

edges=edges,
node_feat={

"feature": feature
})

print(graph.node_feat_info())

The output will be:

[("feature", [None, 100], "float32")]

property nodes
Return all nodes id from 0 to num_nodes - 1

50 Chapter 10. Quick Start

https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf

pgl, Release 1.0.1

property num_edges
Return the number of edges.

property num_graph
Return Number of Graphs

property num_nodes
Return the number of nodes.

outdegree(nodes=None)
Return the outdegree of the given nodes.

This function will return outdegree of given nodes.

Parameters nodes – Return the outdegree of given nodes, if nodes is None, return outdegree
for all nodes

Returns A numpy.array as the given nodes’ outdegree.

predecessor(nodes=None, return_eids=False)
Find predecessor of given nodes.

This function will return the predecessor of given nodes.

Parameters

• nodes – Return the predecessor of given nodes, if nodes is None, return predecessor for
all nodes.

• return_eids – If True return nodes together with corresponding eid

Returns Return a list of numpy.ndarray and each numpy.ndarray represent a list of prede-
cessor ids for given nodes. If return_eids=True, there will be an additional list of
numpy.ndarray and each numpy.ndarray represent a list of eids that connected nodes to their
predecessors.

Example

import numpy as np
num_nodes = 5
edges = [(0, 1), (1, 2), (3, 4)]
graph = Graph(num_nodes=num_nodes,

edges=edges)
pred, pred_eid = graph.predecessor(return_eids=True)

This will give output.

pred:
[[],
[0],
[1],
[],
[3]]

pred_eid:
[[],
[0],
[1],
[],
[2]]

10.18. API Reference 51

pgl, Release 1.0.1

random_walk(nodes, max_depth)
Implement of random walk.

This function get random walks path for given nodes and depth.

Parameters

• nodes – Walk starting from nodes

• max_depth – Max walking depth

Returns A list of walks.

sample_edges(sample_num, replace=False)
Sample edges from the graph

This function helps to sample edges from all edges.

Parameters

• sample_num – The number of samples

• replace – boolean, Whether the sample is with or without replacement.

Returns (u, v), eid each is a numy.array with the same shape.

sample_nodes(sample_num)
Sample nodes from the graph

This function helps to sample nodes from all nodes. Nodes might be duplicated.

Parameters sample_num – The number of samples

Returns A list of nodes

sample_predecessor(nodes, max_degree, return_eids=False, shuffle=False)
Sample predecessor of given nodes.

Parameters

• nodes – Given nodes whose predecessor will be sampled.

• max_degree – The max sampled predecessor for each nodes.

• return_eids – Whether to return the corresponding eids.

Returns Return a list of numpy.ndarray and each numpy.ndarray represent a list of sampled
predecessor ids for given nodes. If return_eids=True, there will be an additional list of
numpy.ndarray and each numpy.ndarray represent a list of eids that connected nodes to their
predecessors.

sample_successor(nodes, max_degree, return_eids=False, shuffle=False)
Sample successors of given nodes.

Parameters

• nodes – Given nodes whose successors will be sampled.

• max_degree – The max sampled successors for each nodes.

• return_eids – Whether to return the corresponding eids.

Returns Return a list of numpy.ndarray and each numpy.ndarray represent a list of sampled
successor ids for given nodes. If return_eids=True, there will be an additional list of
numpy.ndarray and each numpy.ndarray represent a list of eids that connected nodes to their
successors.

52 Chapter 10. Quick Start

pgl, Release 1.0.1

sorted_edges(sort_by=’src’)
Return sorted edges with different strategies.

This function will return sorted edges with different strategy. If sort_by="src", then edges will be
sorted by src nodes and otherwise dst.

Parameters sort_by – The type for sorted edges. (“src” or “dst”)

Returns A tuple of (sorted_src, sorted_dst, sorted_eid).

subgraph(nodes, eid=None, edges=None, edge_feats=None, with_node_feat=True,
with_edge_feat=True)

Generate subgraph with nodes and edge ids.

This function will generate a pgl.graph.Subgraph object and copy all corresponding node and edge
features. Nodes and edges will be reindex from 0. Eid and edges can’t both be None.

WARNING: ALL NODES IN EID MUST BE INCLUDED BY NODES

Parameters

• nodes – Node ids which will be included in the subgraph.

• eid (optional) – Edge ids which will be included in the subgraph.

• edges (optional) – Edge(src, dst) list which will be included in the subgraph.

• with_node_feat – Whether to inherit node features from parent graph.

• with_edge_feat – Whether to inherit edge features from parent graph.

Returns A pgl.graph.Subgraph object.

successor(nodes=None, return_eids=False)
Find successor of given nodes.

This function will return the successor of given nodes.

Parameters

• nodes – Return the successor of given nodes, if nodes is None, return successor for all
nodes.

• return_eids – If True return nodes together with corresponding eid

Returns Return a list of numpy.ndarray and each numpy.ndarray represent a list of successor ids
for given nodes. If return_eids=True, there will be an additional list of numpy.ndarray
and each numpy.ndarray represent a list of eids that connected nodes to their successors.

Example

import numpy as np
num_nodes = 5
edges = [(0, 1), (1, 2), (3, 4)]
graph = Graph(num_nodes=num_nodes,

edges=edges)
succ, succ_eid = graph.successor(return_eids=True)

This will give output.

10.18. API Reference 53

pgl, Release 1.0.1

succ:
[[1],
[2],
[],
[4],
[]]

succ_eid:
[[0],
[1],
[],
[2],
[]]

class pgl.graph.SubGraph(num_nodes, edges=None, node_feat=None, edge_feat=None, rein-
dex=None)

Bases: pgl.graph.Graph

Implementation of SubGraph in pgl.

Subgraph is inherit from Graph. The best way to construct subgraph is to use Graph.subgraph methods to
generate Subgraph object.

Parameters

• num_nodes – number of nodes in a graph

• edges – list of (u, v) tuples

• node_feat (optional) – a dict of numpy array as node features

• edge_feat (optional) – a dict of numpy array as edge features (should have consistent
order with edges)

• reindex – A dictionary that maps parent graph node id to subgraph node id.

reindex_from_parrent_nodes(nodes)
Map the given parent graph node id to subgraph id.

Parameters nodes – A list of nodes from parent graph.

Returns A list of subgraph ids.

reindex_to_parrent_nodes(nodes)
Map the given subgraph node id to parent graph id.

Parameters nodes – A list of nodes in this subgraph.

Returns A list of node ids in parent graph.

class pgl.graph.MultiGraph(graph_list)
Bases: pgl.graph.Graph

Implementation of multiple disjoint graph structure in pgl.

This is a simple implementation of graph structure in pgl.

Parameters graph_list – A list of Graph Instances

Examples

batch_graph = MultiGraph([graph1, graph2, graph3])

54 Chapter 10. Quick Start

pgl, Release 1.0.1

10.18.2 pgl.graph_wrapper module: Graph data holders for Paddle GNN.

This package provides interface to help building static computational graph for PaddlePaddle.

class pgl.graph_wrapper.BaseGraphWrapper
Bases: object

This module implement base class for graph wrapper.

Currently our PGL is developed based on static computational mode of paddle (we’ll support dynamic compu-
tational model later). We need to build model upon a virtual data holder. BaseGraphWrapper provide a virtual
graph structure that users can build deep learning models based on this virtual graph. And then feed real graph
data to run the models. Moreover, we provide convenient message-passing interface (send & recv) for building
graph neural networks.

NOTICE: Don’t use this BaseGraphWrapper directly. Use GraphWrapper and StaticGraphWrapper to
create graph wrapper instead.

property edge_feat
Return a dictionary of tensor representing edge features.

Returns A dictionary whose keys are the feature names and the values are feature tensor.

property edges
Return a tuple of edge Tensor (src, dst).

Returns A tuple of Tensor (src, dst). Src and dst are both tensor with shape (num_edges,) and
dtype int64.

property graph_lod
Return graph index for graphs

Returns A variable with shape [None] as the Lod information of multiple-graph.

indegree()
Return the indegree tensor for all nodes.

Returns A tensor of shape (num_nodes,) in int64.

property node_feat
Return a dictionary of tensor representing node features.

Returns A dictionary whose keys are the feature names and the values are feature tensor.

property num_graph
Return a variable of number of graphs

Returns A variable with shape (1,) as the number of Graphs in int64.

property num_nodes
Return a variable of number of nodes

Returns A variable with shape (1,) as the number of nodes in int64.

recv(msg, reduce_function)
Recv message and aggregate the message by reduce_fucntion

The UDF reduce_function function should has the following format.

def reduce_func(msg):
'''

Args:
msg: A LodTensor or a dictionary of LodTensor whose batch_size

is equals to the number of unique dst nodes.
(continues on next page)

10.18. API Reference 55

pgl, Release 1.0.1

(continued from previous page)

Return:
It should return a tensor with shape (batch_size, out_dims). The
batch size should be the same as msg.

'''
pass

Parameters

• msg – A tensor or a dictionary of tensor created by send function..

• reduce_function – UDF reduce function or strings “sum” as built-in function. The
built-in “sum” will use scatter_add to optimized the speed.

Returns A tensor with shape (num_nodes, out_dims). The output for nodes with no message
will be zeros.

send(message_func, nfeat_list=None, efeat_list=None)
Send message from all src nodes to dst nodes.

The UDF message function should has the following format.

def message_func(src_feat, dst_feat, edge_feat):
'''

Args:
src_feat: the node feat dict attached to the src nodes.
dst_feat: the node feat dict attached to the dst nodes.
edge_feat: the edge feat dict attached to the

corresponding (src, dst) edges.

Return:
It should return a tensor or a dictionary of tensor. And each

→˓tensor
should have a shape of (num_edges, dims).

'''
pass

Parameters

• message_func – UDF function.

• nfeat_list – a list of names or tuple (name, tensor)

• efeat_list – a list of names or tuple (name, tensor)

Returns A dictionary of tensor representing the message. Each of the values in the dictionary
has a shape (num_edges, dim) which should be collected by recv function.

class pgl.graph_wrapper.GraphWrapper(name, node_feat=[], edge_feat=[], **kwargs)
Bases: pgl.graph_wrapper.BaseGraphWrapper

Implement a graph wrapper that creates a graph data holders that attributes and features in the graph are L.
data. And we provide interface to_feed to help converting Graph data into feed_dict.

Parameters

• name – The graph data prefix

56 Chapter 10. Quick Start

pgl, Release 1.0.1

• node_feat – A list of tuples that decribe the details of node feature tenosr. Each tuple
mush be (name, shape, dtype) and the first dimension of the shape must be set unknown (-1
or None) or we can easily use Graph.node_feat_info() to get the node_feat settings.

• edge_feat – A list of tuples that decribe the details of edge feature tenosr. Each tuple
mush be (name, shape, dtype) and the first dimension of the shape must be set unknown (-1
or None) or we can easily use Graph.edge_feat_info() to get the edge_feat settings.

Examples

import numpy as np
import paddle.fluid as fluid
from pgl.graph import Graph
from pgl.graph_wrapper import GraphWrapper

place = fluid.CPUPlace()
exe = fluid.Excecutor(place)

num_nodes = 5
edges = [(0, 1), (1, 2), (3, 4)]
feature = np.random.randn(5, 100)
edge_feature = np.random.randn(3, 100)
graph = Graph(num_nodes=num_nodes,

edges=edges,
node_feat={

"feature": feature
},
edge_feat={

"edge_feature": edge_feature
})

graph_wrapper = GraphWrapper(name="graph",
node_feat=graph.node_feat_info(),
edge_feat=graph.edge_feat_info())

build your deep graph model
...

Initialize parameters for deep graph model
exe.run(fluid.default_startup_program())

for i in range(10):
feed_dict = graph_wrapper.to_feed(graph)
ret = exe.run(fetch_list=[...], feed=feed_dict)

property holder_list
Return the holder list.

to_feed(graph)
Convert the graph into feed_dict.

This function helps to convert graph data into feed dict for fluid.Excecutor to run the model.

Parameters graph – the Graph data object

Returns A dictionary contains data holder names and its corresponding data.

class pgl.graph_wrapper.StaticGraphWrapper(name, graph, place)
Bases: pgl.graph_wrapper.BaseGraphWrapper

10.18. API Reference 57

pgl, Release 1.0.1

Implement a graph wrapper that the data of the graph won’t be changed and it can be fit into the GPU or CPU
memory. This can reduce the time of swapping large data from GPU and CPU.

Parameters

• name – The graph data prefix

• graph – The static graph that should be put into memory

• place – fluid.CPUPlace or fluid.CUDAPlace(n) indicating the device to hold the graph
data.

Examples

If we have a immutable graph and it can be fit into the GPU or CPU. we can just use a StaticGraphWrapper
to pre-place the graph data into devices.

import numpy as np
import paddle.fluid as fluid
from pgl.graph import Graph
from pgl.graph_wrapper import StaticGraphWrapper

place = fluid.CPUPlace()
exe = fluid.Excecutor(place)

num_nodes = 5
edges = [(0, 1), (1, 2), (3, 4)]
feature = np.random.randn(5, 100)
edge_feature = np.random.randn(3, 100)
graph = Graph(num_nodes=num_nodes,

edges=edges,
node_feat={

"feature": feature
},
edge_feat={

"edge_feature": edge_feature
})

graph_wrapper = StaticGraphWrapper(name="graph",
graph=graph,
place=place)

build your deep graph model

Initialize parameters for deep graph model
exe.run(fluid.default_startup_program())

Initialize graph data
graph_wrapper.initialize(place)

initialize(place)
Placing the graph data into the devices.

Parameters place – fluid.CPUPlace or fluid.CUDAPlace(n) indicating the device to hold the
graph data.

class pgl.graph_wrapper.BatchGraphWrapper(num_nodes, num_edges, edges,
node_feats=None, edge_feats=None)

Bases: pgl.graph_wrapper.BaseGraphWrapper

58 Chapter 10. Quick Start

pgl, Release 1.0.1

Implement a graph wrapper that user can use their own data holder. And this graph wrapper support multiple
graphs which is benefit for data parallel algorithms.

Parameters

• num_nodes (int32 or int64) – Shape [num_graph].

• num_edges (int32 or int64) – Shape [num_graph].

• edges (int32 or int64) – Shape [total_num_edges_in_the_graphs, 2] or Tuple with
(src, dst).

• node_feats – A dictionary for node features. Each value should be tensor with shape [
total_num_nodes_in_the_graphs, feature_size]

• edge_feats – A dictionary for edge features. Each value should be tensor with shape [
total_num_edges_in_the_graphs, feature_size]

10.18.3 pgl.layers: Predefined graph neural networks layers.

Generate layers api

pgl.layers.gcn(gw, feature, hidden_size, activation, name, norm=None)
Implementation of graph convolutional neural networks (GCN)

This is an implementation of the paper SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLU-
TIONAL NETWORKS (https://arxiv.org/pdf/1609.02907.pdf).

Parameters

• gw – Graph wrapper object (StaticGraphWrapper or GraphWrapper)

• feature – A tensor with shape (num_nodes, feature_size).

• hidden_size – The hidden size for gcn.

• activation – The activation for the output.

• name – Gcn layer names.

• norm – If norm is not None, then the feature will be normalized. Norm must be tensor
with shape (num_nodes,) and dtype float32.

Returns A tensor with shape (num_nodes, hidden_size)

pgl.layers.gat(gw, feature, hidden_size, activation, name, num_heads=8, feat_drop=0.6,
attn_drop=0.6, is_test=False)

Implementation of graph attention networks (GAT)

This is an implementation of the paper GRAPH ATTENTION NETWORKS (https://arxiv.org/abs/1710.10903).

Parameters

• gw – Graph wrapper object (StaticGraphWrapper or GraphWrapper)

• feature – A tensor with shape (num_nodes, feature_size).

• hidden_size – The hidden size for gat.

• activation – The activation for the output.

• name – Gat layer names.

• num_heads – The head number in gat.

• feat_drop – Dropout rate for feature.

10.18. API Reference 59

https://arxiv.org/pdf/1609.02907.pdf
https://arxiv.org/abs/1710.10903

pgl, Release 1.0.1

• attn_drop – Dropout rate for attention.

• is_test – Whether in test phrase.

Returns A tensor with shape (num_nodes, hidden_size * num_heads)

pgl.layers.gin(gw, feature, hidden_size, activation, name, init_eps=0.0, train_eps=False)
Implementation of Graph Isomorphism Network (GIN) layer.

This is an implementation of the paper How Powerful are Graph Neural Networks? (https://arxiv.org/pdf/1810.
00826.pdf).

In their implementation, all MLPs have 2 layers. Batch normalization is applied on every hidden layer.

Parameters

• gw – Graph wrapper object (StaticGraphWrapper or GraphWrapper)

• feature – A tensor with shape (num_nodes, feature_size).

• name – GIN layer names.

• hidden_size – The hidden size for gin.

• activation – The activation for the output.

• init_eps – float, optional Initial 𝜖 value, default is 0.

• train_eps – bool, optional if True, 𝜖 will be a learnable parameter.

Returns A tensor with shape (num_nodes, hidden_size).

pgl.layers.gaan(gw, feature, hidden_size_a, hidden_size_v, hidden_size_m, hidden_size_o, heads,
name)

Implementation of GaAN

pgl.layers.gen_conv(gw, feature, name, beta=None)
Implementation of GENeralized Graph Convolution (GENConv), see the paper “DeeperGCN: All You Need to
Train Deeper GCNs” in https://arxiv.org/pdf/2006.07739.pdf

Parameters

• gw – Graph wrapper object (StaticGraphWrapper or GraphWrapper)

• feature – A tensor with shape (num_nodes, feature_size).

• beta – [0, +infinity] or “dynamic” or None

• name – deeper gcn layer names.

Returns A tensor with shape (num_nodes, feature_size)

pgl.layers.appnp(gw, feature, edge_dropout=0, alpha=0.2, k_hop=10)
Implementation of APPNP of “Predict then Propagate: Graph Neural Networks meet Personalized PageRank”
(ICLR 2019).

Parameters

• gw – Graph wrapper object (StaticGraphWrapper or GraphWrapper)

• feature – A tensor with shape (num_nodes, feature_size).

• edge_dropout – Edge dropout rate.

• k_hop – K Steps for Propagation

Returns A tensor with shape (num_nodes, hidden_size)

60 Chapter 10. Quick Start

https://arxiv.org/pdf/1810.00826.pdf
https://arxiv.org/pdf/1810.00826.pdf
https://arxiv.org/pdf/2006.07739.pdf

pgl, Release 1.0.1

pgl.layers.gcnii(gw, feature, name, activation=None, alpha=0.5, lambda_l=0.5, k_hop=1,
dropout=0.5, is_test=False)

Implementation of GCNII of “Simple and Deep Graph Convolutional Networks”

paper: https://arxiv.org/pdf/2007.02133.pdf

Parameters

• gw – Graph wrapper object (StaticGraphWrapper or GraphWrapper)

• feature – A tensor with shape (num_nodes, feature_size).

• activation – The activation for the output.

• k_hop – Number of layers for gcnii.

• lambda_l – The hyperparameter of lambda in the paper.

• alpha – The hyperparameter of alpha in the paper.

• dropout – Feature dropout rate.

• is_test – train / test phase.

Returns A tensor with shape (num_nodes, hidden_size)

class pgl.layers.Set2Set(input_dim, n_iters, n_layers)
Bases: object

Implementation of set2set pooling operator.

This is an implementation of the paper ORDER MATTERS: SEQUENCE TO SEQUENCE FOR SETS (https:
//arxiv.org/pdf/1511.06391.pdf).

forward(feat)

Parameters feat – input feature with shape [batch, n_edges, dim].

Returns output feature of set2set pooling with shape [batch, 2*dim].

Return type output_feat

pgl.layers.graph_pooling(gw, node_feat, pool_type)
Implementation of graph pooling

This is an implementation of graph pooling

Parameters

• gw – Graph wrapper object (StaticGraphWrapper or GraphWrapper)

• node_feat – A tensor with shape (num_nodes, feature_size).

• pool_type – The type of pooling (“sum”, “average” , “min”)

Returns A tensor with shape (num_graph, hidden_size)

pgl.layers.graph_norm(gw, feature)
Implementation of graph normalization

Reference Paper: BENCHMARKING GRAPH NEURAL NETWORKS

Each node features is divied by sqrt(num_nodes) per graphs.

Parameters

• gw – Graph wrapper object (StaticGraphWrapper or GraphWrapper)

• feature – A tensor with shape (num_nodes, hidden_size)

10.18. API Reference 61

https://arxiv.org/pdf/2007.02133.pdf
https://arxiv.org/pdf/1511.06391.pdf
https://arxiv.org/pdf/1511.06391.pdf

pgl, Release 1.0.1

Returns A tensor with shape (num_nodes, hidden_size)

pgl.layers.graph_gather(gw, feature, index)
Implementation of graph gather

Gather the corresponding index for each graph.

Parameters

• gw – Graph wrapper object (StaticGraphWrapper or GraphWrapper)

• feature – A tensor with shape (num_nodes,).

• index (int32) –

A tensor with K-rank where the first dim denotes the graph. Shape (num_graph,) or
(num_graph, k1, k2, k3, . . . , kn).

WARNING: We dont support negative index.

Returns A tensor with shape (num_graph, k1, k2, k3, . . . , kn, hidden_size)

10.18.4 pgl.data_loader module: Some benchmark datasets.

This package implements some benchmark dataset for graph network and node representation learning.

class pgl.data_loader.CitationDataset(name, symmetry_edges=True, self_loop=True)
Bases: object

Citation dataset helps to create data for citation dataset (Pubmed and Citeseer)

Parameters

• name – The name for the dataset (“pubmed” or “citeseer”)

• symmetry_edges – Whether to create symmetry edges.

• self_loop – Whether to contain self loop edges.

graph
The Graph data object

y
Labels for each nodes

num_classes
Number of classes.

train_index
The index for nodes in training set.

val_index
The index for nodes in validation set.

test_index
The index for nodes in test set.

class pgl.data_loader.CoraDataset(symmetry_edges=True, self_loop=True)
Bases: object

Cora dataset implementation

Parameters

• symmetry_edges – Whether to create symmetry edges.

62 Chapter 10. Quick Start

pgl, Release 1.0.1

• self_loop – Whether to contain self loop edges.

graph
The Graph data object

y
Labels for each nodes

num_classes
Number of classes.

train_index
The index for nodes in training set.

val_index
The index for nodes in validation set.

test_index
The index for nodes in test set.

class pgl.data_loader.ArXivDataset(np_random_seed=123)
Bases: object

ArXiv dataset implementation

Parameters np_random_seed – The random seed for numpy.

graph
The Graph data object.

class pgl.data_loader.BlogCatalogDataset(symmetry_edges=True, self_loop=False)
Bases: object

BlogCatalog dataset implementation

Parameters

• symmetry_edges – Whether to create symmetry edges.

• self_loop – Whether to contain self loop edges.

graph
The Graph data object.

num_groups
Number of classes.

train_index
The index for nodes in training set.

test_index
The index for nodes in validation set.

10.18.5 pgl.utils.paddle_helper module: Some helper function for Paddle.

paddle_helper package contain some simple function to help building paddle models.

pgl.utils.paddle_helper.constant(name, value, dtype, hide_batch_size=True)
Create constant variable with given data.

This function helps to create constants variable with given numpy.ndarray data.

Parameters

• name – variable name

10.18. API Reference 63

pgl, Release 1.0.1

• value – numpy.ndarray the value of constant

• dtype – the type of constant

• hide_batch_size – If set the first dimenstion as unknown, the explicit batch size may
cause some error in paddle. For example, when the value has a shape of (batch_size, dim1,
dim2), it will return a variable with shape (-1, dim1, dim2).

Returns A tuple contain the constant variable and the constant variable initialize function.

Examples

import paddle.fluid as fluid
place = fluid.CPUPlace()
exe = fluid.Executor(place)
constant_var, constant_var_init = constant(name="constant",

value=np.array([5.0],
dtype="float32"))

exe.run(fluid.default_startup_program())
Run After default startup
constant_var_init(place)

pgl.utils.paddle_helper.ensure_dtype(input, dtype)
If input is dtype, return input

else cast input into dtype

Parameters

• input – Input tensor

• dtype – a string of type

Returns If input is dtype, return input, else cast input into dtype

pgl.utils.paddle_helper.gather(input, index)
Gather input from given index.

Slicing input data with given index. This function rewrite paddle.L.gather to fix issue: https://github.com/
PaddlePaddle/Paddle/issues/17509 when paddlepaddle’s version is less than 1.5.

Parameters

• input – Input tensor to be sliced

• index – Slice index

Returns A tensor that are sliced from given input data.

pgl.utils.paddle_helper.lod_constant(name, value, lod, dtype)
Create constant lod variable with given data,

This function helps to create constants lod variable with given numpy.ndarray data and lod information.

Parameters

• name – variable name

• value – numpy.ndarray the value of constant

• dtype – the type of constant

• lod – lod infos of given value.

Returns A tuple contain the constant variable and the constant variable initialize function.

64 Chapter 10. Quick Start

https://github.com/PaddlePaddle/Paddle/issues/17509
https://github.com/PaddlePaddle/Paddle/issues/17509

pgl, Release 1.0.1

Examples

import paddle.fluid as fluid
place = fluid.CPUPlace()
exe = fluid.Executor(place)
constant_var, constant_var_init = lod_constant(name="constant",

value=np.array([[5.0], [1.0], [2.0]],
lod=[2, 1],
dtype="float32"))

exe.run(fluid.default_startup_program())
Run After default startup
constant_var_init(place)

pgl.utils.paddle_helper.lod_remove(input)
Lod Remove

Remove the lod for LodTensor and Flatten the data into 1D-Tensor.

Parameters input – A tensor to be flattend

Returns A 1D input

pgl.utils.paddle_helper.masked_select(input, mask)
Slice the value from given Mask

Parameters

• input – Input tensor to be selected

• mask – A bool tensor for sliced.

Returns Part of inputs where mask is True.

pgl.utils.paddle_helper.scatter_add(input, index, updates)
Scatter add updates to input by given index.

Adds sparse updates to input variables.

Parameters

• input – Input tensor to be updated

• index – Slice index

• updates – Must have same type as input.

Returns Same type and shape as input.

pgl.utils.paddle_helper.scatter_max(input, index, updates)
Scatter max updates to input by given index.

Adds sparse updates to input variables.

Parameters

• input – Input tensor to be updated

• index – Slice index

• updates – Must have same type as input.

Returns Same type and shape as input.

pgl.utils.paddle_helper.sequence_softmax(x, beta=None)
Compute sequence softmax over paddle LodTensor

10.18. API Reference 65

pgl, Release 1.0.1

This function compute softmax normalization along with the length of sequence. This function is an extention
of L.sequence_softmax which can only deal with LodTensor whose last dimension is 1.

Parameters

• x – The input variable which is a LodTensor.

• beta – Inverse Temperature

Returns Output of sequence_softmax

10.18.6 pgl.utils.mp_reader module: MultiProcessing reader helper function for
Paddle.

Optimized Multiprocessing Reader for PaddlePaddle

pgl.utils.mp_reader.deserialize_data(data)

pgl.utils.mp_reader.index_iter(data)
return indexing iter

pgl.utils.mp_reader.log = <Logger pgl.utils.mp_reader (DEBUG)>

pgl.utils.mp_reader.multiprocess_reader(readers, use_pipe=True, queue_size=1000,
pipe_size=10)

multiprocess_reader use python multi process to read data from readers and then use multiprocess.Queue or
multiprocess.Pipe to merge all data. The process number is equal to the number of input readers, each process
call one reader. Multiprocess.Queue require the rw access right to /dev/shm, some platform does not support.
you need to create multiple readers first, these readers should be independent to each other so that each process
can work independently. An example: .. code-block:: python

reader0 = reader([“file01”, “file02”]) reader1 = reader([“file11”, “file12”]) reader1 = reader([“file21”,
“file22”]) reader = multiprocess_reader([reader0, reader1, reader2],

queue_size=100, use_pipe=False)

pgl.utils.mp_reader.numpy_deserialize_data(data)
deserialize_data

pgl.utils.mp_reader.numpy_serialize_data(data)
serialize_data

pgl.utils.mp_reader.serialize_data(data)

10.18.7 pgl.heter_graph module: Heterogenous Graph Storage

This package implement Heterogeneous Graph structure for handling Heterogeneous graph data.

class pgl.heter_graph.HeterGraph(num_nodes, edges, node_types=None, node_feat=None,
edge_feat=None)

Bases: object

Implementation of heterogeneous graph structure in pgl

This is a simple implementation of heterogeneous graph structure in pgl.

Parameters

• num_nodes – number of nodes in a heterogeneous graph

• edges – dict, every element in dict is a list of (u, v) tuples.

66 Chapter 10. Quick Start

pgl, Release 1.0.1

• node_types (optional) – list of (u, node_type) tuples to specify the node type of every
node

• node_feat (optional) – a dict of numpy array as node features

• edge_feat (optional) – a dict of dict as edge features for every edge type

Examples

import numpy as np
num_nodes = 4
node_types = [(0, 'user'), (1, 'item'), (2, 'item'), (3, 'user')]
edges = {

'edges_type1': [(0,1), (3,2)],
'edges_type2': [(1,2), (3,1)],

}
node_feat = {'feature': np.random.randn(4, 16)}
edges_feat = {

'edges_type1': {'h': np.random.randn(2, 16)},
'edges_type2': {'h': np.random.randn(2, 16)},

}

g = heter_graph.HeterGraph(
num_nodes=num_nodes,
edges=edges,
node_types=node_types,
node_feat=node_feat,
edge_feat=edges_feat)

dump(path, indegree=False, outdegree=False)

property edge_feat
Return edge features of all edge types.

edge_feat_info()
Return the information of edge feature for HeterGraphWrapper.

This function return the information of edge features of all edge types. And this function is used to help
constructing HeterGraphWrapper

Returns A dict of list of tuple (name, shape, dtype) for all given edge feature.

property edge_types
Return a list of edge types.

edge_types_info()
Return the information of all edge types.

Returns A list of all edge types.

indegree(nodes=None, edge_type=None)
Return the indegree of the given nodes with the specified edge_type.

Parameters

• nodes – Return the indegree of given nodes. if nodes is None, return indegree for all
nodes.

• edge_types – Return the indegree with specified edge_type. if edge_type is None,
return the total indegree of the given nodes.

10.18. API Reference 67

pgl, Release 1.0.1

Returns A numpy.ndarray as the given nodes’ indegree.

node_batch_iter(batch_size, shuffle=True, n_type=None)
Node batch iterator

Iterate all nodes by batch with the specified node type.

Parameters

• batch_size – The batch size of each batch of nodes.

• shuffle – Whether shuffle the nodes.

• n_type – Iterate the nodes with the specified node type. If n_type is None, iterate all
nodes by batch.

Returns Batch iterator

property node_feat
Return a dictionary of node features.

node_feat_info()
Return the information of node feature for HeterGraphWrapper.

This function return the information of node features of all node types. And this function is used to help
constructing HeterGraphWrapper

Returns A list of tuple (name, shape, dtype) for all given node feature.

property node_types
Return the node types.

property nodes
Return all nodes id from 0 to num_nodes - 1

property num_edges
Return edges number of all edge types.

property num_nodes
Return the number of nodes.

num_nodes_by_type(n_type=None)
Return the number of nodes with the specified node type.

outdegree(nodes=None, edge_type=None)
Return the outdegree of the given nodes with the specified edge_type.

Parameters

• nodes – Return the outdegree of given nodes, if nodes is None, return outdegree for all
nodes

• edge_types – Return the outdegree with specified edge_type. if edge_type is None,
return the total outdegree of the given nodes.

Returns A numpy.array as the given nodes’ outdegree.

predecessor(edge_type, nodes=None, return_eids=False)
Find predecessor of given nodes with the specified edge_type.

Parameters

• nodes – Return the predecessor of given nodes, if nodes is None, return predecessor for
all nodes

• edge_types – Return the predecessor with specified edge_type.

68 Chapter 10. Quick Start

pgl, Release 1.0.1

• return_eids – If True return nodes together with corresponding eid

sample_nodes(sample_num, n_type=None)
Sample nodes with the specified n_type from the graph

This function helps to sample nodes with the specified n_type from the graph. If n_type is None, this
function will sample nodes from all nodes. Nodes might be duplicated.

Parameters

• sample_num – The number of samples

• n_type – The nodes of type to be sampled

Returns A list of nodes

sample_predecessor(edge_type, nodes, max_degree, return_eids=False, shuffle=False)
Sample predecessors of given nodes with the specified edge_type.

Parameters

• edge_type – The specified edge_type.

• nodes – Given nodes whose predecessors will be sampled.

• max_degree – The max sampled predecessors for each nodes.

• return_eids – Whether to return the corresponding eids.

Returns Return a list of numpy.ndarray and each numpy.ndarray represent a list of sampled
predecessor ids for given nodes with specified edge type. If return_eids=True, there
will be an additional list of numpy.ndarray and each numpy.ndarray represent a list of eids
that connected nodes to their predecessors.

sample_successor(edge_type, nodes, max_degree, return_eids=False, shuffle=False)
Sample successors of given nodes with the specified edge_type.

Parameters

• edge_type – The specified edge_type.

• nodes – Given nodes whose successors will be sampled.

• max_degree – The max sampled successors for each nodes.

• return_eids – Whether to return the corresponding eids.

Returns Return a list of numpy.ndarray and each numpy.ndarray represent a list of sampled
successor ids for given nodes with specified edge type. If return_eids=True, there will
be an additional list of numpy.ndarray and each numpy.ndarray represent a list of eids that
connected nodes to their successors.

successor(edge_type, nodes=None, return_eids=False)
Find successor of given nodes with the specified edge_type.

Parameters

• nodes – Return the successor of given nodes, if nodes is None, return successor for all
nodes

• edge_types – Return the successor with specified edge_type. if edge_type is None,
return the total successor of the given nodes and eids are invalid in this way.

• return_eids – If True return nodes together with corresponding eid

10.18. API Reference 69

pgl, Release 1.0.1

class pgl.heter_graph.SubHeterGraph(num_nodes, edges, node_types=None, node_feat=None,
edge_feat=None, reindex=None)

Bases: pgl.heter_graph.HeterGraph

Implementation of SubHeterGraph in pgl.

SubHeterGraph is inherit from HeterGraph.

Parameters

• num_nodes – number of nodes in a heterogeneous graph

• edges – dict, every element in dict is a list of (u, v) tuples.

• node_types (optional) – list of (u, node_type) tuples to specify the node type of every
node

• node_feat (optional) – a dict of numpy array as node features

• edge_feat (optional) – a dict of dict as edge features for every edge type

• reindex – A dictionary that maps parent hetergraph node id to subhetergraph node id.

reindex_from_parrent_nodes(nodes)
Map the given parent graph node id to subgraph id.

Parameters nodes – A list of nodes from parent graph.

Returns A list of subgraph ids.

reindex_to_parrent_nodes(nodes)
Map the given subgraph node id to parent graph id.

Parameters nodes – A list of nodes in this subgraph.

Returns A list of node ids in parent graph.

10.18.8 pgl.heter_graph_wrapper module: Heterogenous Graph data holders for
Paddle GNN.

This package provides interface to help building static computational graph for PaddlePaddle.

class pgl.heter_graph_wrapper.HeterGraphWrapper(name, edge_types, node_feat={},
edge_feat={}, **kwargs)

Bases: object

Implement a heterogeneous graph wrapper that creates a graph data holders that attributes and features in the
heterogeneous graph. And we provide interface to_feed to help converting Graph data into feed_dict.

Parameters

• name – The heterogeneous graph data prefix

• node_feat – A dict of list of tuples that decribe the details of node feature tenosr. Each
tuple mush be (name, shape, dtype) and the first dimension of the shape must be set un-
known (-1 or None) or we can easily use HeterGraph.node_feat_info() to get the
node_feat settings.

• edge_feat – A dict of list of tuples that decribe the details of edge feature tenosr. Each
tuple mush be (name, shape, dtype) and the first dimension of the shape must be set un-
known (-1 or None) or we can easily use HeterGraph.edge_feat_info() to get the
edge_feat settings.

70 Chapter 10. Quick Start

pgl, Release 1.0.1

Examples

import paddle.fluid as fluid
import numpy as np
from pgl import heter_graph
from pgl import heter_graph_wrapper
num_nodes = 4
node_types = [(0, 'user'), (1, 'item'), (2, 'item'), (3, 'user')]
edges = {

'edges_type1': [(0,1), (3,2)],
'edges_type2': [(1,2), (3,1)],

}
node_feat = {'feature': np.random.randn(4, 16)}
edges_feat = {

'edges_type1': {'h': np.random.randn(2, 16)},
'edges_type2': {'h': np.random.randn(2, 16)},

}

g = heter_graph.HeterGraph(
num_nodes=num_nodes,
edges=edges,
node_types=node_types,
node_feat=node_feat,
edge_feat=edges_feat)

gw = heter_graph_wrapper.HeterGraphWrapper(
name='heter_graph',
edge_types = g.edge_types_info(),
node_feat=g.node_feat_info(),
edge_feat=g.edge_feat_info())

to_feed(heterGraph, edge_types_list=’__ALL__’)
Convert the graph into feed_dict.

This function helps to convert graph data into feed dict for fluid.Excecutor to run the model.

Parameters

• heterGraph – the HeterGraph data object

• edge_types_list – the edge types list to be fed

Returns A dictinary contains data holder names and its coresponding data.

10.18. API Reference 71

pgl, Release 1.0.1

72 Chapter 10. Quick Start

CHAPTER

ELEVEN

THE TEAM

11.1 The Team

PGL is developed and maintained by NLP and Paddle Teams at Baidu

PGL is developed and maintained by NLP and Paddle Teams at Baidu

73

pgl, Release 1.0.1

74 Chapter 11. The Team

CHAPTER

TWELVE

LICENSE

PGL uses Apache License 2.0.

75

pgl, Release 1.0.1

76 Chapter 12. License

PYTHON MODULE INDEX

p
pgl.data_loader, 62
pgl.graph, 48
pgl.graph_wrapper, 55
pgl.heter_graph, 66
pgl.heter_graph_wrapper, 70
pgl.layers, 59
pgl.utils.mp_reader, 66
pgl.utils.paddle_helper, 63

77

pgl, Release 1.0.1

78 Python Module Index

INDEX

A
adj_dst_index() (pgl.graph.Graph property), 48
adj_src_index() (pgl.graph.Graph property), 48
appnp() (in module pgl.layers), 60
ArXivDataset (class in pgl.data_loader), 63

B
BaseGraphWrapper (class in pgl.graph_wrapper), 55
BatchGraphWrapper (class in pgl.graph_wrapper),

58
BlogCatalogDataset (class in pgl.data_loader), 63

C
CitationDataset (class in pgl.data_loader), 62
constant() (in module pgl.utils.paddle_helper), 63
CoraDataset (class in pgl.data_loader), 62

D
deserialize_data() (in module

pgl.utils.mp_reader), 66
dump() (pgl.graph.Graph method), 49
dump() (pgl.heter_graph.HeterGraph method), 67

E
edge_feat() (pgl.graph.Graph property), 49
edge_feat() (pgl.graph_wrapper.BaseGraphWrapper

property), 55
edge_feat() (pgl.heter_graph.HeterGraph property),

67
edge_feat_info() (pgl.graph.Graph method), 49
edge_feat_info() (pgl.heter_graph.HeterGraph

method), 67
edge_types() (pgl.heter_graph.HeterGraph prop-

erty), 67
edge_types_info() (pgl.heter_graph.HeterGraph

method), 67
edges() (pgl.graph.Graph property), 49
edges() (pgl.graph_wrapper.BaseGraphWrapper

property), 55
ensure_dtype() (in module pgl.utils.paddle_helper),

64

F
forward() (pgl.layers.Set2Set method), 61

G
gaan() (in module pgl.layers), 60
gat() (in module pgl.layers), 59
gather() (in module pgl.utils.paddle_helper), 64
gcn() (in module pgl.layers), 59
gcnii() (in module pgl.layers), 60
gen_conv() (in module pgl.layers), 60
gin() (in module pgl.layers), 60
Graph (class in pgl.graph), 48
graph (pgl.data_loader.ArXivDataset attribute), 63
graph (pgl.data_loader.BlogCatalogDataset attribute),

63
graph (pgl.data_loader.CitationDataset attribute), 62
graph (pgl.data_loader.CoraDataset attribute), 63
graph_gather() (in module pgl.layers), 62
graph_lod() (pgl.graph.Graph property), 49
graph_lod() (pgl.graph_wrapper.BaseGraphWrapper

property), 55
graph_norm() (in module pgl.layers), 61
graph_pooling() (in module pgl.layers), 61
GraphWrapper (class in pgl.graph_wrapper), 56

H
has_edges_between() (pgl.graph.Graph method),

49
HeterGraph (class in pgl.heter_graph), 66
HeterGraphWrapper (class in

pgl.heter_graph_wrapper), 70
holder_list() (pgl.graph_wrapper.GraphWrapper

property), 57

I
indegree() (pgl.graph.Graph method), 49
indegree() (pgl.graph_wrapper.BaseGraphWrapper

method), 55
indegree() (pgl.heter_graph.HeterGraph method),

67
index_iter() (in module pgl.utils.mp_reader), 66

79

pgl, Release 1.0.1

initialize() (pgl.graph_wrapper.StaticGraphWrapper
method), 58

L
lod_constant() (in module pgl.utils.paddle_helper),

64
lod_remove() (in module pgl.utils.paddle_helper), 65
log (in module pgl.utils.mp_reader), 66

M
masked_select() (in module

pgl.utils.paddle_helper), 65
MultiGraph (class in pgl.graph), 54
multiprocess_reader() (in module

pgl.utils.mp_reader), 66

N
node2vec_random_walk() (pgl.graph.Graph

method), 50
node_batch_iter() (pgl.graph.Graph method), 50
node_batch_iter() (pgl.heter_graph.HeterGraph

method), 68
node_feat() (pgl.graph.Graph property), 50
node_feat() (pgl.graph_wrapper.BaseGraphWrapper

property), 55
node_feat() (pgl.heter_graph.HeterGraph property),

68
node_feat_info() (pgl.graph.Graph method), 50
node_feat_info() (pgl.heter_graph.HeterGraph

method), 68
node_types() (pgl.heter_graph.HeterGraph prop-

erty), 68
nodes() (pgl.graph.Graph property), 50
nodes() (pgl.heter_graph.HeterGraph property), 68
num_classes (pgl.data_loader.CitationDataset

attribute), 62
num_classes (pgl.data_loader.CoraDataset at-

tribute), 63
num_edges() (pgl.graph.Graph property), 50
num_edges() (pgl.heter_graph.HeterGraph property),

68
num_graph() (pgl.graph.Graph property), 51
num_graph() (pgl.graph_wrapper.BaseGraphWrapper

property), 55
num_groups (pgl.data_loader.BlogCatalogDataset at-

tribute), 63
num_nodes() (pgl.graph.Graph property), 51
num_nodes() (pgl.graph_wrapper.BaseGraphWrapper

property), 55
num_nodes() (pgl.heter_graph.HeterGraph property),

68
num_nodes_by_type()

(pgl.heter_graph.HeterGraph method), 68

numpy_deserialize_data() (in module
pgl.utils.mp_reader), 66

numpy_serialize_data() (in module
pgl.utils.mp_reader), 66

O
outdegree() (pgl.graph.Graph method), 51
outdegree() (pgl.heter_graph.HeterGraph method),

68

P
pgl.data_loader (module), 62
pgl.graph (module), 48
pgl.graph_wrapper (module), 55
pgl.heter_graph (module), 66
pgl.heter_graph_wrapper (module), 70
pgl.layers (module), 59
pgl.utils.mp_reader (module), 66
pgl.utils.paddle_helper (module), 63
predecessor() (pgl.graph.Graph method), 51
predecessor() (pgl.heter_graph.HeterGraph

method), 68

R
random_walk() (pgl.graph.Graph method), 51
recv() (pgl.graph_wrapper.BaseGraphWrapper

method), 55
reindex_from_parrent_nodes()

(pgl.graph.SubGraph method), 54
reindex_from_parrent_nodes()

(pgl.heter_graph.SubHeterGraph method),
70

reindex_to_parrent_nodes()
(pgl.graph.SubGraph method), 54

reindex_to_parrent_nodes()
(pgl.heter_graph.SubHeterGraph method),
70

S
sample_edges() (pgl.graph.Graph method), 52
sample_nodes() (pgl.graph.Graph method), 52
sample_nodes() (pgl.heter_graph.HeterGraph

method), 69
sample_predecessor() (pgl.graph.Graph

method), 52
sample_predecessor()

(pgl.heter_graph.HeterGraph method), 69
sample_successor() (pgl.graph.Graph method),

52
sample_successor() (pgl.heter_graph.HeterGraph

method), 69
scatter_add() (in module pgl.utils.paddle_helper),

65

80 Index

pgl, Release 1.0.1

scatter_max() (in module pgl.utils.paddle_helper),
65

send() (pgl.graph_wrapper.BaseGraphWrapper
method), 56

sequence_softmax() (in module
pgl.utils.paddle_helper), 65

serialize_data() (in module pgl.utils.mp_reader),
66

Set2Set (class in pgl.layers), 61
sorted_edges() (pgl.graph.Graph method), 52
StaticGraphWrapper (class in pgl.graph_wrapper),

57
SubGraph (class in pgl.graph), 54
subgraph() (pgl.graph.Graph method), 53
SubHeterGraph (class in pgl.heter_graph), 69
successor() (pgl.graph.Graph method), 53
successor() (pgl.heter_graph.HeterGraph method),

69

T
test_index (pgl.data_loader.BlogCatalogDataset at-

tribute), 63
test_index (pgl.data_loader.CitationDataset at-

tribute), 62
test_index (pgl.data_loader.CoraDataset attribute),

63
to_feed() (pgl.graph_wrapper.GraphWrapper

method), 57
to_feed() (pgl.heter_graph_wrapper.HeterGraphWrapper

method), 71
train_index (pgl.data_loader.BlogCatalogDataset

attribute), 63
train_index (pgl.data_loader.CitationDataset

attribute), 62
train_index (pgl.data_loader.CoraDataset at-

tribute), 63

V
val_index (pgl.data_loader.CitationDataset at-

tribute), 62
val_index (pgl.data_loader.CoraDataset attribute),

63

Y
y (pgl.data_loader.CitationDataset attribute), 62
y (pgl.data_loader.CoraDataset attribute), 63

Index 81

	Highlight: Efficiency - Support Scatter-Gather and LodTensor Message Passing
	Highlight: Flexibility - Natively Support Heterogeneous Graph Learning
	Large-Scale: Support distributed graph storage and distributed training algorithms
	Model Zoo
	System requirements
	Installation
	The Team
	License
	Paddle Graph Learning (PGL)
	Quick Start
	The Team
	License
	Python Module Index
	Index

