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Paddle Graph Learning (PGL) is an efficient and flexible graph learning framework based on PaddlePaddle.

The newly released PGL supports heterogeneous graph learning on both walk based paradigm and message-passing
based paradigm by providing MetaPath sampling and Message Passing mechanism on heterogeneous graph. Further-
mor, The newly released PGL also support distributed graph storage and some distributed training algorithms, such as
distributed deep walk and distributed graphsage. Combined with the PaddlePaddle deep learning framework, we are
able to support both graph representation learning models and graph neural networks, and thus our framework has a
wide range of graph-based applications.

One of the most important benefits of graph neural networks compared to other models is the ability to use node-to-
node connectivity information, but coding the communication between nodes is very cumbersome. At PGL we adopt
Message Passing Paradigm similar to DGL to help to build a customize graph neural network easily. Users only need
to write send and recv functions to easily implement a simple GCN. As shown in the following figure, for the first
step the send function is defined on the edges of the graph, and the user can customize the send function 𝜑𝑒 to send the
message from the source to the target node. For the second step, the recv function 𝜑𝑣 is responsible for aggregating ⊕
messages together from different sources.

To write a sum aggregator, users only need to write the following codes.

import pgl
import paddle
import numpy as np

num_nodes = 5
edges = [(0, 1), (1, 2), (3, 4)]
feature = np.random.randn(5, 100).astype(np.float32)

g = pgl.Graph(num_nodes=num_nodes,
edges=edges,
node_feat={

"h": feature
})

g.tensor()

def send_func(src_feat, dst_feat, edge_feat):
return src_feat

def recv_func(msg):
return msg.reduce_sum(msg["h"])

msg = g.send(send_func, src_feat=g.node_feat)

ret = g.recv(recv_func, msg)
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CHAPTER

ONE

HIGHLIGHT: FLEXIBILITY - NATIVELY SUPPORT HETEROGENEOUS
GRAPH LEARNING

Graph can conveniently represent the relation between things in the real world, but the categories of things and the
relation between things are various. Therefore, in the heterogeneous graph, we need to distinguish the node types and
edge types in the graph network. PGL models heterogeneous graphs that contain multiple node types and multiple
edge types, and can describe complex connections between different types.

1.1 Support meta path walk sampling on heterogeneous graph

The left side of the figure above describes a shopping social network. The nodes above have two categories of users
and goods, and the relations between users and users, users and goods, and goods and goods. The right of the above
figure is a simple sampling process of MetaPath. When you input any MetaPath as UPU (user-product-user), you will
find the following results

Then on this basis, and introducing word2vec and other methods to support learning metapath2vec and other algo-
rithms of heterogeneous graph representation.

1.2 Support Message Passing mechanism on heterogeneous graph

Because of the different node types on the heterogeneous graph, the message delivery is also different. As shown on
the left, it has five neighbors, belonging to two different node types. As shown on the right of the figure above, nodes
belonging to different types need to be aggregated separately during message delivery, and then merged into the final
message to update the target node. On this basis, PGL supports heterogeneous graph algorithms based on message
passing, such as GATNE and other algorithms.

3
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CHAPTER

TWO

LARGE-SCALE: SUPPORT DISTRIBUTED GRAPH STORAGE AND
DISTRIBUTED TRAINING ALGORITHMS

In most cases of large-scale graph learning, we need distributed graph storage and distributed training support. As
shown in the following figure, PGL provided a general solution of large-scale training, we adopted PaddleFleet as
our distributed parameter servers, which supports large scale distributed embeddings and a lightweighted distributed
storage engine so tcan easily set up a large scale distributed training algorithm with MPI clusters.

5
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CHAPTER

THREE

MODEL ZOO

The following graph learning models have been implemented in the framework. You can find more examples and the
details here.

Model feature
ERNIESage ERNIE SAmple aggreGatE for Text and Graph
GCN Graph Convolutional Neural Networks
GAT Graph Attention Network
GraphSage Large-scale graph convolution network based on neighborhood sampling
unSup-GraphSage Unsupervised GraphSAGE
LINE Representation learning based on first-order and second-order neighbors
DeepWalk Representation learning by DFS random walk
MetaPath2Vec Representation learning based on metapath
Node2Vec The representation learning Combined with DFS and BFS
Struct2Vec Representation learning based on structural similarity
SGC Simplified graph convolution neural network
GES The graph represents learning method with node features
DGI Unsupervised representation learning based on graph convolution network
GATNE Representation Learning of Heterogeneous Graph based on MessagePassing

The above models consists of three parts, namely, graph representation learning, graph neural network and heteroge-
neous graph learning, which are also divided into graph representation learning and graph neural network.
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CHAPTER

FOUR

SYSTEM REQUIREMENTS

PGL requires:

• paddle >= 2.0.0

• cython

PGL only supports Python 3

9
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CHAPTER

FIVE

INSTALLATION

You can simply install it via pip.

pip install pgl

11
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CHAPTER

SIX

THE TEAM

PGL is developed and maintained by NLP and Paddle Teams at Baidu

E-mail: nlp-gnn[at]baidu.com

13
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CHAPTER

SEVEN

LICENSE

PGL uses Apache License 2.0.

15
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CHAPTER

EIGHT

PADDLE GRAPH LEARNING (PGL)

Paddle Graph Learning (PGL) is an efficient and flexible graph learning framework based on PaddlePaddle.

The newly released PGL supports heterogeneous graph learning on both walk based paradigm and message-passing
based paradigm by providing MetaPath sampling and Message Passing mechanism on heterogeneous graph. Further-
mor, The newly released PGL also support distributed graph storage and some distributed training algorithms, such as
distributed deep walk and distributed graphsage. Combined with the PaddlePaddle deep learning framework, we are
able to support both graph representation learning models and graph neural networks, and thus our framework has a
wide range of graph-based applications.

One of the most important benefits of graph neural networks compared to other models is the ability to use node-to-
node connectivity information, but coding the communication between nodes is very cumbersome. At PGL we adopt
Message Passing Paradigm similar to DGL to help to build a customize graph neural network easily. Users only need
to write send and recv functions to easily implement a simple GCN. As shown in the following figure, for the first
step the send function is defined on the edges of the graph, and the user can customize the send function 𝜑𝑒 to send the
message from the source to the target node. For the second step, the recv function 𝜑𝑣 is responsible for aggregating ⊕
messages together from different sources.

To write a sum aggregator, users only need to write the following codes.

import pgl
import paddle
import numpy as np

num_nodes = 5
edges = [(0, 1), (1, 2), (3, 4)]
feature = np.random.randn(5, 100).astype(np.float32)

g = pgl.Graph(num_nodes=num_nodes,
edges=edges,
node_feat={

"h": feature
})

g.tensor()

def send_func(src_feat, dst_feat, edge_feat):
return src_feat

def recv_func(msg):
return msg.reduce_sum(msg["h"])

msg = g.send(send_func, src_feat=g.node_feat)

ret = g.recv(recv_func, msg)

17
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8.1 Highlight: Flexibility - Natively Support Heterogeneous Graph
Learning

Graph can conveniently represent the relation between things in the real world, but the categories of things and the
relation between things are various. Therefore, in the heterogeneous graph, we need to distinguish the node types and
edge types in the graph network. PGL models heterogeneous graphs that contain multiple node types and multiple
edge types, and can describe complex connections between different types.

8.1.1 Support meta path walk sampling on heterogeneous graph

The left side of the figure above describes a shopping social network. The nodes above have two categories of users
and goods, and the relations between users and users, users and goods, and goods and goods. The right of the above
figure is a simple sampling process of MetaPath. When you input any MetaPath as UPU (user-product-user), you will
find the following results

Then on this basis, and introducing word2vec and other methods to support learning metapath2vec and other algo-
rithms of heterogeneous graph representation.

8.1.2 Support Message Passing mechanism on heterogeneous graph

Because of the different node types on the heterogeneous graph, the message delivery is also different. As shown on
the left, it has five neighbors, belonging to two different node types. As shown on the right of the figure above, nodes
belonging to different types need to be aggregated separately during message delivery, and then merged into the final
message to update the target node. On this basis, PGL supports heterogeneous graph algorithms based on message
passing, such as GATNE and other algorithms.

8.2 Large-Scale: Support distributed graph storage and distributed
training algorithms

In most cases of large-scale graph learning, we need distributed graph storage and distributed training support. As
shown in the following figure, PGL provided a general solution of large-scale training, we adopted PaddleFleet as
our distributed parameter servers, which supports large scale distributed embeddings and a lightweighted distributed
storage engine so tcan easily set up a large scale distributed training algorithm with MPI clusters.

8.3 Model Zoo

The following graph learning models have been implemented in the framework. You can find more examples and the
details here.

18 Chapter 8. Paddle Graph Learning (PGL)
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Model feature
ERNIESage ERNIE SAmple aggreGatE for Text and Graph
GCN Graph Convolutional Neural Networks
GAT Graph Attention Network
GraphSage Large-scale graph convolution network based on neighborhood sampling
unSup-GraphSage Unsupervised GraphSAGE
LINE Representation learning based on first-order and second-order neighbors
DeepWalk Representation learning by DFS random walk
MetaPath2Vec Representation learning based on metapath
Node2Vec The representation learning Combined with DFS and BFS
Struct2Vec Representation learning based on structural similarity
SGC Simplified graph convolution neural network
GES The graph represents learning method with node features
DGI Unsupervised representation learning based on graph convolution network
GATNE Representation Learning of Heterogeneous Graph based on MessagePassing

The above models consists of three parts, namely, graph representation learning, graph neural network and heteroge-
neous graph learning, which are also divided into graph representation learning and graph neural network.

8.4 System requirements

PGL requires:

• paddle >= 2.0.0

• cython

PGL only supports Python 3

8.5 Installation

You can simply install it via pip.

pip install pgl

8.6 The Team

PGL is developed and maintained by NLP and Paddle Teams at Baidu

E-mail: nlp-gnn[at]baidu.com

8.7 License

PGL uses Apache License 2.0.

8.4. System requirements 19
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CHAPTER

NINE

QUICK START

9.1 Quick Start Instructions

9.1.1 Install PGL

To install Paddle Graph Learning, we need the following packages.

paddlepaddle >= 2.0.0
cython

We can simply install pgl by pip.

pip install pgl

9.1.2 Introduction

Paddle Graph Learning (PGL) is an efficient and flexible graph learning framework based on PaddlePaddle.

To let users get started quickly, the main purpose of this tutorial is:

• Understand how a graph network is calculated based on PGL.

• Use PGL to implement a simple graph neural network model, which is used to classify the nodes in the graph.

9.1.3 Step 1: using PGL to create a graph

Suppose we have a graph with 10 nodes and 14 edges as shown in the following figure:

21
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Our purpose is to train a graph neural network to classify yellow and green nodes. So we can create this graph in such
way:

import numpy as np

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.optimizer import Adam
import pgl

def build_graph():
# define the number of nodes; we can use number to represent every node
num_node = 10
# add edges, we represent all edges as a list of tuple (src, dst)
edge_list = [(2, 0), (2, 1), (3, 1),(4, 0), (5, 0),

(6, 0), (6, 4), (6, 5), (7, 0), (7, 1),
(7, 2), (7, 3), (8, 0), (9, 7)]

# Each node can be represented by a d-dimensional feature vector, here for simple,
→˓ the feature vectors are randomly generated.

d = 16
feature = np.random.randn(num_node, d).astype("float32")
# each edge has it own weight
edge_feature = np.random.randn(len(edge_list), 1).astype("float32")

# create a graph
g = pgl.Graph(edges = edge_list,

num_nodes = num_node,
node_feat = {'nfeat':feature},

(continues on next page)
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(continued from previous page)

edge_feat ={'efeat': edge_feature})

return g

g = build_graph()

After creating a graph in PGL, we can print out some information in the graph.

print('There are %d nodes in the graph.'%g.num_nodes)
print('There are %d edges in the graph.'%g.num_edges)

There are 10 nodes in the graph.
There are 14 edges in the graph.

9.1.4 Step 2: create a simple Graph Convolutional Network(GCN)

In this tutorial, we use a simple Graph Convolutional Network(GCN) developed by Kipf and Welling to perform node
classification. Here we use the simplest GCN structure. If you want to know more about GCN, you can refer to the
original paper.

• In layer 𝑙each node 𝑢𝑙
𝑖 has a feature vector ℎ𝑙

𝑖;

• In every layer, the idea of GCN is that the feature vector ℎ𝑙+1
𝑖 of each node 𝑢𝑙+1

𝑖 in the next layer are obtained
by weighting the feature vectors of all the neighboring nodes and then go through a non-linear transformation.

In PGL, we can easily implement a GCN layer as follows:

class GCN(nn.Layer):
"""Implement of GCN
"""

def __init__(self,
input_size,
num_class,
num_layers=2,
hidden_size=16,

**kwargs):
super(GCN, self).__init__()
self.num_class = num_class
self.num_layers = num_layers
self.hidden_size = hidden_size
self.gcns = nn.LayerList()
for i in range(self.num_layers):

if i == 0:
self.gcns.append(

pgl.nn.GCNConv(
input_size,
self.hidden_size,
activation="relu",
norm=True))

else:
self.gcns.append(

pgl.nn.GCNConv(
self.hidden_size,
self.hidden_size,

(continues on next page)
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(continued from previous page)

activation="relu",
norm=True))

self.output = nn.Linear(self.hidden_size, self.num_class)
def forward(self, graph, feature):

for m in self.gcns:
feature = m(graph, feature)

logits = self.output(feature)
return logits

9.1.5 Step 3: data preprocessing

Since we implement a node binary classifier, we can use 0 and 1 to represent two classes respectively.

y = [0,1,1,1,0,0,0,1,0,1]
label = np.array(y, dtype="float32")

9.1.6 Step 4: training

The training process of GCN is the same as that of other paddle-based models.

g = g.tensor()
y = paddle.to_tensor(y)
gcn = GCN(16, 2)
criterion = paddle.nn.loss.CrossEntropyLoss()
optim = Adam(learning_rate=0.01,

parameters=gcn.parameters())

gcn.train()
for epoch in range(30):

logits = gcn(g, g.node_feat['nfeat'])
loss = criterion(logits, y)
loss.backward()
optim.step()
optim.clear_grad()
print("epoch: %s | loss: %.4f" % (epoch, loss.numpy()[0]))

epoch: 0 | loss: 0.7915
epoch: 1 | loss: 0.6991
epoch: 2 | loss: 0.6377
epoch: 3 | loss: 0.6056
epoch: 4 | loss: 0.5844
epoch: 5 | loss: 0.5643
epoch: 6 | loss: 0.5431
epoch: 7 | loss: 0.5214
epoch: 8 | loss: 0.5001
epoch: 9 | loss: 0.4812
epoch: 10 | loss: 0.4683
epoch: 11 | loss: 0.4565
epoch: 12 | loss: 0.4449
epoch: 13 | loss: 0.4343
epoch: 14 | loss: 0.4248

(continues on next page)
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(continued from previous page)

epoch: 15 | loss: 0.4159
epoch: 16 | loss: 0.4081
epoch: 17 | loss: 0.4016
epoch: 18 | loss: 0.3963
epoch: 19 | loss: 0.3922
epoch: 20 | loss: 0.3892
epoch: 21 | loss: 0.3869
epoch: 22 | loss: 0.3854
epoch: 23 | loss: 0.3845
epoch: 24 | loss: 0.3839
epoch: 25 | loss: 0.3837
epoch: 26 | loss: 0.3838
epoch: 27 | loss: 0.3840
epoch: 28 | loss: 0.3843
epoch: 29 | loss: 0.3846

9.2 Quick Start with HeterGraph

9.2.1 Introduction

In real world, there exists many graphs contain multiple types of nodes and edges, which we call them Heterogeneous
Graphs. Obviously, heterogenous graphs are more complex than homogeneous graphs.

To deal with such heterogeneous graphs, PGL develops a graph framework to support graph neural network computa-
tions and meta-path-based sampling on heterogenous graph.

The goal of this tutorial:

• example of heterogenous graph data;

• Understand how PGL supports computations in heterogenous graph;

• Using PGL to implement a simple heterogenous graph neural network model to classfiy a particular type of node
in a heterogenous graph network.

9.2.2 Example of heterogenous graph

There are a lot of graph data that consists of edges and nodes of multiple types. For example, e-commerce network is
very common heterogenous graph in real world. It contains at least two types of nodes (user and item) and two types
of edges (buy and click).

The following figure depicts several users click or buy some items. This graph has two types of nodes corresponding
to “user” and “item”. It also contain two types of edge “buy” and “click”.

9.2. Quick Start with HeterGraph 25
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9.2.3 Creating a heterogenous graph with PGL

In heterogenous graph, there exists multiple edges, so we should distinguish them. In PGL, the edges are built in
below format:

edges = {
'click': [(0, 4), (0, 7), (1, 6), (2, 5), (3, 6)],
'buy': [(0, 5), (1, 4), (1, 6), (2, 7), (3, 5)],

}

clicked = [(j, i) for i, j in edges['click']]
bought = [(j, i) for i, j in edges['buy']]
edges['clicked'] = clicked
edges['bought'] = bought

In heterogenous graph, nodes are also of different types. Therefore, you need to mark the type of each node, the format
of the node type is as follows:

node_types = [(0, 'user'), (1, 'user'), (2, 'user'), (3, 'user'), (4, 'item'),
(5, 'item'),(6, 'item'), (7, 'item')]

Because of the different types of edges, edge features also need to be separated by different types.

import numpy as np
import paddle
import paddle.nn as nn

(continues on next page)
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import pgl
seed = 0
np.random.seed(0)
paddle.seed(0)

num_nodes = len(node_types)

node_features = {'features': np.random.randn(num_nodes, 8).astype("float32")}

labels = np.array([0, 1, 0, 1, 0, 1, 1, 0])

Now, we can build a heterogenous graph by using PGL.

g = pgl.HeterGraph(edges=edges,
node_types=node_types,
node_feat=node_features)

9.2.4 MessagePassing on Heterogeneous Graph

After building the heterogeneous graph, we can easily carry out the message passing mode. In this case, we have two
different types of edges.

class HeterMessagePassingLayer(nn.Layer):
def __init__(self, in_dim, out_dim, etypes):

super(HeterMessagePassingLayer, self).__init__()
self.in_dim = in_dim
self.out_dim = out_dim
self.etypes = etypes

self.weight = []
for i in range(len(self.etypes)):

self.weight.append(
self.create_parameter(shape=[self.in_dim, self.out_dim]))

def forward(self, graph, feat):
def send_func(src_feat, dst_feat, edge_feat):

return src_feat

def recv_func(msg):
return msg.reduce_mean(msg["h"])

feat_list = []
for idx, etype in enumerate(self.etypes):

h = paddle.matmul(feat, self.weight[idx])
msg = graph[etype].send(send_func, src_feat={"h": h})
h = graph[etype].recv(recv_func, msg)
feat_list.append(h)

h = paddle.stack(feat_list, axis=0)
h = paddle.sum(h, axis=0)

return h

Create a simple GNN by stacking two HeterMessagePassingLayer.

9.2. Quick Start with HeterGraph 27
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class HeterGNN(nn.Layer):
def __init__(self, in_dim, hidden_size, etypes, num_class):

super(HeterGNN, self).__init__()
self.in_dim = in_dim
self.hidden_size = hidden_size
self.etypes = etypes
self.num_class = num_class

self.layers = nn.LayerList()
self.layers.append(

HeterMessagePassingLayer(self.in_dim, self.hidden_size, self.etypes))
self.layers.append(

HeterMessagePassingLayer(self.hidden_size, self.hidden_size, self.
→˓etypes))

self.linear = nn.Linear(self.hidden_size, self.num_class)

def forward(self, graph, feat):
h = feat
for i in range(len(self.layers)):

h = self.layers[i](graph, h)

logits = self.linear(h)

return logits

9.2.5 Training

model = HeterGNN(8, 8, g.edge_types, 2)

criterion = paddle.nn.loss.CrossEntropyLoss()

optim = paddle.optimizer.Adam(learning_rate=0.05,
parameters=model.parameters())

g.tensor()
labels = paddle.to_tensor(labels)
for epoch in range(10):

#print(g.node_feat["features"])
logits = model(g, g.node_feat["features"])
loss = criterion(logits, labels)
loss.backward()
optim.step()
optim.clear_grad()

print("epoch: %s | loss: %.4f" % (epoch, loss.numpy()[0]))

epoch: 0 | loss: 1.3536
epoch: 1 | loss: 1.1593
epoch: 2 | loss: 0.9971
epoch: 3 | loss: 0.8670
epoch: 4 | loss: 0.7591
epoch: 5 | loss: 0.6629
epoch: 6 | loss: 0.5773
epoch: 7 | loss: 0.5130

(continues on next page)
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epoch: 8 | loss: 0.4782
epoch: 9 | loss: 0.4551

9.3 Graph Isomorphism Network (GIN)

Graph Isomorphism Network (GIN) is a simple graph neural network that expects to achieve the ability as the
Weisfeiler-Lehman graph isomorphism test. Based on PGL, we reproduce the GIN model.

9.3.1 Datasets

The dataset can be downloaded from here. After downloading the datauncompress them, then a directory named
./dataset/ can be found in current directory. Note that the current directory is the root directory of GIN model.

9.3.2 Dependencies

• paddlepaddle >= 2.0.0

• pgl >= 2.0

9.3.3 How to run

For examples, use GPU to train GIN model on MUTAG dataset.

export CUDA_VISIBLE_DEVICES=0
python main.py --use_cuda --dataset_name MUTAG --data_path ./dataset

9.3.4 Hyperparameters

• data_path: the root path of your dataset

• dataset_name: the name of the dataset

• fold_idx: The 𝑓𝑜𝑙𝑑_𝑖𝑑𝑥𝑡ℎ fold of dataset splited. Here we use 10 fold cross-validation

• train_eps: whether the 𝜖 parameter is learnable.

9.3.5 Experiment results Accuracy

MUTAG COLLAB IMDBBINARY IMDBMULTI
PGL result 90.8 78.6 76.8 50.8
paper reuslt 90.0 80.0 75.1 52.3

9.3. Graph Isomorphism Network (GIN) 29
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9.4 GCN: Graph Convolutional Networks

Graph Convolutional Network (GCN) is a powerful neural network designed for machine learning on graphs. Based
on PGL, we reproduce GCN algorithms and reach the same level of indicators as the paper in citation network bench-
marks.

9.4.1 Simple example to build GCN

To build a gcn layer, one can use our pre-defined pgl.nn.GCNConv or just write a gcn layer with message passing
interface.

import paddle
import paddle.nn as nn

class CustomGCNConv(nn.Layer):
def __init__(self, input_size, output_size):

super(GCNConv, self).__init__()
self.input_size = input_size
self.output_size = output_size
self.linear = nn.Linear(input_size, output_size)
self.norm = norm
self.activation = activation

def forward(self, graph, feature):
norm = GF.degree_norm(graph)

feature = self.linear(feature)

output = graph.send_recv(feature, "sum")

output = output * norm
output = nn.functional.relu(output)
return output

9.4.2 Datasets

The datasets contain three citation networks: CORA, PUBMED, CITESEER. The details for these three datasets can
be found in the paper.

9.4.3 Dependencies

• paddlepaddle==2.0.0

• pgl==2.1

9.4.4 Performance

We train our models for 200 epochs and report the accuracy on the test dataset.
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Dataset Accuracy
Cora ~81%
Pubmed ~79%
Citeseer ~71%

9.4.5 How to run

For examples, use gpu to train gcn on cora dataset.

# Run on GPU
CUDA_VISIBLE_DEVICES=0 python train.py --dataset cora

# Run on CPU
CUDA_VISIBLE_DEVICES= python train.py --dataset cora

Hyperparameters

• dataset: The citation dataset “cora”, “citeseer”, “pubmed”.

9.5 GAT: Graph Attention Networks

Graph Attention Networks (GAT) is a novel architectures that operate on graph-structured data, which leverages
masked self-attentional layers to address the shortcomings of prior methods based on graph convolutions or their
approximations. Based on PGL, we reproduce GAT algorithms and reach the same level of indicators as the paper in
citation network benchmarks.

9.5.1 Simple example to build single head GAT

To build a gat layer, one can use our pre-defined pgl.nn.GATConv or just write a gat layer with message passing
interface.

import paddle.fluid as fluid

class CustomGATConv(nn.Layer):
def __init__(self,

input_size, hidden_size,
):

self.hidden_size = hidden_size
self.num_heads = num_heads

self.linear = nn.Linear(input_size, hidden_size)
self.weight_src = self.create_parameter(shape=[ hidden_size ])
self.weight_dst = self.create_parameter(shape=[ hidden_size ])

self.leaky_relu = nn.LeakyReLU(negative_slope=0.2)

def send_attention(self, src_feat, dst_feat, edge_feat):
alpha = src_feat["src"] + dst_feat["dst"]
alpha = self.leaky_relu(alpha)

(continues on next page)
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return {"alpha": alpha, "h": src_feat["h"]}

def reduce_attention(self, msg):
alpha = msg.reduce_softmax(msg["alpha"])
feature = msg["h"]
feature = feature * alpha
feature = msg.reduce(feature, pool_type="sum")
return feature

def forward(self, graph, feature):
feature = self.linear(feature)
attn_src = paddle.sum(feature * self.weight_src, axis=-1)
attn_dst = paddle.sum(feature * self.weight_dst, axis=-1)
msg = graph.send(

self.send_attention,
src_feat={"src": attn_src,

"h": feature},
dst_feat={"dst": attn_dst})

output = graph.recv(reduce_func=self.reduce_attention, msg=msg)
return output

9.5.2 Datasets

The datasets contain three citation networks: CORA, PUBMED, CITESEER. The details for these three datasets can
be found in the paper.

9.5.3 Dependencies

• paddlepaddle==2.0.0

• pgl==2.1

9.5.4 Performance

We train our models for 200 epochs and report the accuracy on the test dataset.

Dataset Accuracy
Cora ~83%
Pubmed ~78%
Citeseer ~70%

9.5.5 How to run

For examples, use gpu to train gat on cora dataset.

python train.py --dataset cora
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Hyperparameters

• dataset: The citation dataset “cora”, “citeseer”, “pubmed”.

• use_cuda: Use gpu if assign use_cuda.

9.6 RGCN: Modeling Relational Data with Graph Convolutional Net-
works

RGCN is a graph convolutional networks applied in heterogeneous graph.

Its message-passing equation is as follows:

:math:‘‘ h{i}^{(l+1)}=sigmaleft(sum{r in mathcal{R}} sum{j in mathcal{N}{r}(i)} W{r}^{(l)} h{j}^{(l)}right) $$

From the equation above, we can see that there are two parts in the computation.

1, Message aggregation within each relation 𝑟 (edge_type).

2, Reduction that merges the results from multiple relationships.

9.6.1 Datasets

Here, we use MUTAG dataset to reproduce this model. The dataset can be downloaded from here.

9.6.2 Dependencies

• paddlepaddle>=2.0

• pgl>=2.1

9.6.3 How to run

To train a RGCN model on MUTAG dataset, you can just run

export CUDA_VISIBLE_DEVICES=0

python train.py --data_path /your/path/to/mutag_data

If you want to train a RGCN model with multiple GPUs, you can just run with fleetrun API with
CUDA_VISIBLE_DEVICES

CUDA_VISIBLE_DEVICES=0,1 fleetrun train.py --data_path /your/path/to/mutag_data

Hyperparameters

• data_path: The directory of your dataset.

• epochs: Number of epochs default (10)

• input_size: Input dimension.

• hidden_size: The hidden size for the RGCN model.
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• num_class: The number of classes to be predicted.

• num_layers: The number of RGCN layers to be applied.

• num_bases: Number of basis decomposition

• seed: Random seed.

• lr: Learning rate.

9.6.4 Performance

We train the RGCN model for 10 epochs and report the besst accuracy on the test dataset.

Dataset Accuracy Reported in paper
MUTAG 77.94% 73.23%

9.7 Easy Paper Reproduction for Citation Network ( Cora / Pubmed /
Citeseer )

This page tries to reproduce all the Graph Neural Network paper for Citation Network (Cora/Pubmed/Citeseer) with
the public train/dev/test split, which is the Hello world dataset (small and fast) for graph neural networks. But it’s
very hard to achieve very high performance.

All datasets are runned with public split of semi-supervised settings. And we report the averarge accuracy by running
10 times.

9.7.1 Experiment Results

Model Cora Pubmed Citeseer Remarks
Vanilla GCN (Kipf
2017)

0.807(0.010) 0.794(0.003) 0.710(0.007) •

GAT (Veličković
2017)

0.834(0.004) 0.772(0.004) 0.700(0.006) •

SGC(Wu 2019) 0.818(0.000) 0.782(0.000) 0.708(0.000) •

APPNP (Johannes
2018)

0.846(0.003) 0.803(0.002) 0.719(0.003) Almost the same
with the results re-
ported in Appendix
E.

GCNII (64 Layers,
1500 Epochs, Chen
2020)

0.846(0.003) 0.798(0.003) 0.724(0.006) •

SSGC (Zhu 2021) 0.834(0.000) 0.796(0.000) 0.734(0.000) Weight decay is
important, 1e-4
for Citeseer/ 5e-6
for Cora / 5e-6 for
Pubmed
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9.7.2 How to run the experiments?

# Device choose
# use GPU
export CUDA_VISIBLE_DEVICES=0
# use CPU
export CUDA_VISIBLE_DEVICES=

# Experimental API
# If you want to try MultiGPU-FullBatch training. Run the following code instead.
# This will only speed up models that have more computation on edges.
# For example, the TransformerConv in [Yun 2020](https://arxiv.org/abs/2009.03509).

CUDA_VISIBLE_DEVICES=0,1 multi_gpu_train.py --conf config/transformer.yaml

# GCN
python train.py --conf config/gcn.yaml --dataset cora
python train.py --conf config/gcn.yaml --dataset pubmed
python train.py --conf config/gcn.yaml --dataset citeseer

# GAT
python train.py --conf config/gat.yaml --dataset cora
python train.py --conf config/gat.yaml --dataset pubmed
python train.py --conf config/gat.yaml --dataset citeseer

# SGC
python train.py --conf config/sgc.yaml --dataset cora
python train.py --conf config/sgc.yaml --dataset pubmed
python train.py --conf config/sgc.yaml --dataset citeseer

# APPNP
python train.py --conf config/appnp.yaml --dataset cora
python train.py --conf config/appnp.yaml --dataset pubmed
python train.py --conf config/appnp.yaml --dataset citeseer

# GCNII (The original code use 1500 epochs.)
python train.py --conf config/gcnii.yaml --dataset cora --epoch 1500
python train.py --conf config/gcnii.yaml --dataset pubmed --epoch 1500
python train.py --conf config/gcnii.yaml --dataset citeseer --epoch 1500

# TransformConv + Gated Residual
python train.py --conf config/transformer.yaml --dataset cora
python train.py --conf config/transformer.yaml --dataset pubmed
python train.py --conf config/transformer.yaml --dataset citeseer

# SSGC
python train.py --conf config/sgc.yaml --dataset cora
python train.py --conf config/sgc.yaml --dataset pubmed
python train.py --conf config/sgc.yaml --dataset citeseer

9.8 GraphSAGE: Inductive Representation Learning on Large Graphs

GraphSAGE is a general inductive framework that leverages node feature information (e.g., text attributes) to effi-
ciently generate node embeddings for previously unseen data. Instead of training individual embeddings for each
node, GraphSAGE learns a function that generates embeddings by sampling and aggregating features from a node’s
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local neighborhood. Based on PGL, we reproduce GraphSAGE algorithm and reach the same level of indicators as
the paper in Reddit Dataset. Besides, this is an example of subgraph sampling and training in PGL.

9.8.1 Datasets

The reddit dataset should be downloaded from the following links and placed in the directory pgl.data. The details
for Reddit Dataset can be found here.

• reddit.npz https://drive.google.com/open?id=19SphVl_Oe8SJ1r87Hr5a6znx3nJu1F2J

• reddit_adj.npz: https://drive.google.com/open?id=174vb0Ws7Vxk_QTUtxqTgDHSQ4El4qDHt

9.8.2 Dependencies

• paddlepaddle>=2.0

• pgl

9.8.3 How to run

To train a GraphSAGE model on Reddit Dataset, you can just run

python train.py --epoch 10 --normalize --symmetry

If you want to train a GraphSAGE model with multiple GPUs, you can just run with fleetrun API with
CUDA_VISIBLE_DEVICES

CUDA_VISIBLE_DEVICES=0,1 fleetrun train.py --epoch 10 --normalize --symmetry

If you want to train a GraphSAGE model with CPU Parameters, you can just run with fleetrun API with
train_distributed_cpu.py

fleetrun --worker_num 2 --server_num 2 train_distributed_cpu.py --epoch 10 --
→˓normalize --symmetry

Hyperparameters

• epoch: Number of epochs default (10)

• normalize: Normalize the input feature if assign normalize.

• sample_workers: The number of workers for multiprocessing subgraph sample.

• lr: Learning rate.

• symmetry: Make the edges symmetric if assign symmetry.

• batch_size: Batch size.

• samples: The max neighbors for each layers hop neighbor sampling. (default: [25, 10])

• hidden_size: The hidden size of the GraphSAGE models.
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9.8.4 Performance

We train our models for 200 epochs and report the accuracy on the test dataset.

Aggregator Accuracy Reported in paper
Mean 95.70% 95.0%

9.9 API Reference

9.9.1 pgl.heter_graph

9.9.2 pgl.graph

This package implement Graph structure for handling graph data.

class pgl.graph.Graph(edges, num_nodes=None, node_feat=None, edge_feat=None, **kwargs)
Bases: object

Implementation of graph interface in pgl.

This is a simple implementation of graph structure in pgl. pgl.Graph is alias on pgl.graph.Graph

Parameters

• edges – list of (u, v) tuples, 2D numpy.ndarry or 2D paddle.Tensor

• (optional (num_nodes) – int, numpy or paddle.Tensor): Number of nodes in a graph.
If not provided, the number of nodes will be infered from edges.

• node_feat (optional) – a dict of numpy array as node features

• edge_feat (optional) – a dict of numpy array as edge features (should have consistent
order with edges)

Examples 1:

• Create a graph with numpy.

• Convert it into paddle.Tensor .

• Do send recv for graph neural network.

import numpy as np
import pgl

num_nodes = 5
edges = [ (0, 1), (1, 2), (3, 4)]
feature = np.random.randn(5, 100).astype(np.float32)
edge_feature = np.random.randn(3, 100).astype(np.float32)
graph = pgl.Graph(num_nodes=num_nodes,

edges=edges,
node_feat={

"feature": feature
},
edge_feat={

"edge_feature": edge_feature
})

graph.tensor()

(continues on next page)
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model = pgl.nn.GCNConv(100, 100)
out = model(graph, graph.node_feat["feature"])

Examples 2:

• Create a graph with paddle.Tensor.

• Do send recv for graph neural network.

import paddle
import pgl

num_nodes = 5
edges = paddle.to_tensor([ (0, 1), (1, 2), (3, 4)])
feature = paddle.randn(shape=[5, 100])
edge_feature = paddle.randn(shape=[3, 100])
graph = pgl.Graph(num_nodes=num_nodes,

edges=edges,
node_feat={

"feature": feature
},
edge_feat={

"edge_feature": edge_feature
})

model = pgl.nn.GCNConv(100, 100)
out = model(graph, graph.node_feat["feature"])

property adj_dst_index
Return an EdgeIndex object for dst.

property adj_src_index
Return an EdgeIndex object for src.

static batch(graph_list)
This is alias on pgl.Graph.disjoint with merged_graph_index=False

classmethod disjoint(graph_list, merged_graph_index=False)
This method disjoint list of graph into a big graph.

Parameters

• graph_list (Graph List) – A list of Graphs.

• merged_graph_index – whether to keeped the graph_id that the nodes belongs to.

import numpy as np
import pgl

num_nodes = 5
edges = [ (0, 1), (1, 2), (3, 4)]
graph = pgl.Graph(num_nodes=num_nodes,

edges=edges)
joint_graph = pgl.Graph.disjoint([graph, graph], merged_graph_index=False)
print(joint_graph.graph_node_id)
>>> [0, 0, 0, 0, 0, 1, 1, 1, 1 ,1]
print(joint_graph.num_graph)
>>> 2

(continues on next page)
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joint_graph = pgl.Graph.disjoint([graph, graph], merged_graph_index=True)
print(joint_graph.graph_node_id)
>>> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
print(joint_graph.num_graph)
>>> 1

dump(path)
Dump the graph into a directory.

This function will dump the graph information into the given directory path. The graph can be read back
with pgl.Graph.load

Parameters path – The directory for the storage of the graph.

property edge_feat
Return a dictionary of edge features.

property edges
Return all edges in numpy.ndarray or paddle.Tensor with shape (num_edges, 2).

property graph_edge_id
Return a numpy.ndarray or paddle.Tensor with shape [num_edges] that indicates which graph the edges
belongs to.

Examples:

import numpy as np
import pgl

num_nodes = 5
edges = [ (0, 1), (1, 2), (3, 4)]
graph = pgl.Graph(num_nodes=num_nodes,

edges=edges)
joint_graph = pgl.Graph.batch([graph, graph])
print(joint_graph.graph_edge_id)

>>> [0, 0, 0, 1, 1, 1]

property graph_node_id
Return a numpy.ndarray or paddle.Tensor with shape [num_nodes] that indicates which graph the nodes
belongs to.

Examples:

import numpy as np
import pgl

num_nodes = 5
edges = [ (0, 1), (1, 2), (3, 4)]
graph = pgl.Graph(num_nodes=num_nodes,

edges=edges)
joint_graph = pgl.Graph.batch([graph, graph])
print(joint_graph.graph_node_id)

>>> [0, 0, 0, 0, 0, 1, 1, 1, 1 ,1]

indegree(nodes=None)
Return the indegree of the given nodes
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This function will return indegree of given nodes.

Parameters nodes – Return the indegree of given nodes, if nodes is None, return indegree for
all nodes

Returns A numpy.ndarray or paddle.Tensor as the given nodes’ indegree.

is_tensor()
Return whether the Graph is in paddle.Tensor or numpy format.

classmethod load(path, mmap_mode=’r’)
Load Graph from path and return a Graph in numpy.

Parameters

• path – The directory path of the stored Graph.

• mmap_mode – Default mmap_mode="r". If not None, memory-map the graph.

node_batch_iter(batch_size, shuffle=True)
Node batch iterator

Iterate all node by batch.

Parameters

• batch_size – The batch size of each batch of nodes.

• shuffle – Whether shuffle the nodes.

Returns Batch iterator

property node_feat
Return a dictionary of node features.

property nodes
Return all nodes id from 0 to num_nodes - 1

property num_edges
Return the number of edges.

property num_graph
Return Number of Graphs

property num_nodes
Return the number of nodes.

numpy(inplace=True)
Convert the Graph into numpy format.

In numpy format, the graph edges and node features are in numpy.ndarray format. But you can’t use send
and recv in numpy graph.

Parameters inplace – (Default True) Whether to convert the graph into numpy inplace.

outdegree(nodes=None)
Return the outdegree of the given nodes.

This function will return outdegree of given nodes.

Parameters nodes – Return the outdegree of given nodes, if nodes is None, return outdegree
for all nodes

Returns A numpy.array or paddle.Tensor as the given nodes’ outdegree.
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predecessor(nodes=None, return_eids=False)
Find predecessor of given nodes.

This function will return the predecessor of given nodes.

Parameters

• nodes – Return the predecessor of given nodes, if nodes is None, return predecessor for
all nodes.

• return_eids – If True return nodes together with corresponding eid

Returns Return a list of numpy.ndarray and each numpy.ndarray represent a list of prede-
cessor ids for given nodes. If return_eids=True, there will be an additional list of
numpy.ndarray and each numpy.ndarray represent a list of eids that connected nodes to their
predecessors.

Example

import numpy as np
import pgl

num_nodes = 5
edges = [ (0, 1), (1, 2), (3, 4)]
graph = pgl.Graph(num_nodes=num_nodes,

edges=edges)
pred, pred_eid = graph.predecessor(return_eids=True)

This will give output.

pred:
[[],
[0],
[1],
[],
[3]]

pred_eid:
[[],
[0],
[1],
[],
[2]]

recv(reduce_func, msg, recv_mode=’dst’)
Recv message and aggregate the message by reduce_func

The UDF reduce_func function should has the following format.

def reduce_func(msg):
'''

Args:

msg: A LodTensor or a dictionary of LodTensor whose batch_size
is equals to the number of unique dst nodes.

Return:

(continues on next page)
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It should return a tensor with shape (batch_size, out_dims). The
batch size should be the same as msg.

'''
pass

Parameters

• msg – A tensor or a dictionary of tensor created by send function..

• reduce_func – A callable UDF reduce function.

Returns A tensor with shape (num_nodes, out_dims). The output for nodes with no message
will be zeros.

sample_predecessor(nodes, max_degree, return_eids=False, shuffle=False)
Sample predecessor of given nodes.

Parameters

• nodes – Given nodes whose predecessor will be sampled.

• max_degree – The max sampled predecessor for each nodes.

• return_eids – Whether to return the corresponding eids.

Returns Return a list of numpy.ndarray and each numpy.ndarray represent a list of sampled
predecessor ids for given nodes. If return_eids=True, there will be an additional list of
numpy.ndarray and each numpy.ndarray represent a list of eids that connected nodes to their
predecessors.

sample_successor(nodes, max_degree, return_eids=False, shuffle=False)
Sample successors of given nodes.

Parameters

• nodes – Given nodes whose successors will be sampled.

• max_degree – The max sampled successors for each nodes.

• return_eids – Whether to return the corresponding eids.

Returns Return a list of numpy.ndarray and each numpy.ndarray represent a list of sampled
successor ids for given nodes. If return_eids=True, there will be an additional list of
numpy.ndarray and each numpy.ndarray represent a list of eids that connected nodes to their
successors.

send(message_func, src_feat=None, dst_feat=None, edge_feat=None, node_feat=None)
Send message from all src nodes to dst nodes.

The UDF message function should has the following format.

def message_func(src_feat, dst_feat, edge_feat):
'''

Args:
src_feat: the node feat dict attached to the src nodes.
dst_feat: the node feat dict attached to the dst nodes.
edge_feat: the edge feat dict attached to the

corresponding (src, dst) edges.

Return:
It should return a tensor or a dictionary of tensor. And each

→˓tensor (continues on next page)
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should have a shape of (num_edges, dims).
'''
return {'msg': src_feat['h']}

Parameters

• message_func – UDF function.

• src_feat – a dict {name: tensor,} to build src node feat

• dst_feat – a dict {name: tensor,} to build dst node feat

• node_feat – a dict {name: tensor,} to build both src and dst node feat

• edge_feat – a dict {name: tensor,} to build edge feat

Returns A dictionary of tensor representing the message. Each of the values in the dictionary
has a shape (num_edges, dim) which should be collected by recv function.

send_recv(feature, reduce_func=’sum’)
This method combines the send and recv function.

Now, this method only supports default copy send function, and built-in receive function (‘sum’, ‘mean’,
‘max’, ‘min’).

Parameters

• feature (Tensor | Tensor List) – the node feature of a graph.

• reduce_func (str) – ‘sum’, ‘mean’, ‘max’, ‘min’ built-in receive function.

sorted_edges(sort_by=’src’)
Return sorted edges with different strategies.

This function will return sorted edges with different strategy. If sort_by="src", then edges will be
sorted by src nodes and otherwise dst.

Parameters sort_by – The type for sorted edges. (“src” or “dst”)

Returns A tuple of (sorted_src, sorted_dst, sorted_eid).

successor(nodes=None, return_eids=False)
Find successor of given nodes.

This function will return the successor of given nodes.

Parameters

• nodes – Return the successor of given nodes, if nodes is None, return successor for all
nodes.

• return_eids – If True return nodes together with corresponding eid

Returns Return a list of numpy.ndarray and each numpy.ndarray represent a list of successor ids
for given nodes. If return_eids=True, there will be an additional list of numpy.ndarray
and each numpy.ndarray represent a list of eids that connected nodes to their successors.

Example
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import numpy as np
import pgl

num_nodes = 5
edges = [ (0, 1), (1, 2), (3, 4)]
graph = pgl.Graph(num_nodes=num_nodes,

edges=edges)
succ, succ_eid = graph.successor(return_eids=True)

This will give output.

succ:
[[1],
[2],
[],
[4],
[]]

succ_eid:
[[0],
[1],
[],
[2],
[]]

tensor(inplace=True)
Convert the Graph into paddle.Tensor format.

In paddle.Tensor format, the graph edges and node features are in paddle.Tensor format. You can use send
and recv in paddle.Tensor graph.

Parameters inplace – (Default True) Whether to convert the graph into tensor inplace.

to_mmap(path=’./tmp’)
Turn the Graph into Memmap mode which can share memory between processes.

9.9.3 pgl.sampling

Graph Sampling Function

pgl.sampling.graphsage_sample(graph, nodes, samples, ignore_edges=[])
Implement of graphsage sample. Reference paper: https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.
pdf. :param graph: A pgl graph instance :param nodes: Sample starting from nodes :param samples: A list,
number of neighbors in each layer :param ignore_edges: list of edge(src, dst) will be ignored.

Returns A list of subgraphs

pgl.sampling.random_walk(graph, nodes, max_depth)
Implement of random walk.

This function get random walks path for given nodes and depth.

Parameters

• nodes – Walk starting from nodes

• max_depth – Max walking depth

Returns A list of walks.
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pgl.sampling.subgraph(graph, nodes, eid=None, edges=None, with_node_feat=True,
with_edge_feat=True)

Generate subgraph with nodes and edge ids. This function will generate a pgl.graph.Subgraph object and
copy all corresponding node and edge features. Nodes and edges will be reindex from 0. Eid and edges can’t
both be None. WARNING: ALL NODES IN EID MUST BE INCLUDED BY NODES

Parameters

• nodes – Node ids which will be included in the subgraph.

• eid (optional) – Edge ids which will be included in the subgraph.

• edges (optional) – Edge(src, dst) list which will be included in the subgraph.

• with_node_feat – Whether to inherit node features from parent graph.

• with_edge_feat – Whether to inherit edge features from parent graph.

Returns A pgl.Graph object.

9.9.4 pgl.nn

Graph Convolution Layers

This package implements common layers to help building graph neural networks.

class pgl.nn.conv.GCNConv(input_size, output_size, activation=None, norm=True)
Bases: paddle.fluid.dygraph.layers.Layer

Implementation of graph convolutional neural networks (GCN)

This is an implementation of the paper SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLU-
TIONAL NETWORKS (https://arxiv.org/pdf/1609.02907.pdf).

Parameters

• input_size – The size of the inputs.

• output_size – The size of outputs

• activation – The activation for the output.

• norm – If norm is True, then the feature will be normalized.

forward(graph, feature, norm=None)

Parameters

• graph – pgl.Graph instance.

• feature – A tensor with shape (num_nodes, input_size)

• norm – (default None). If norm is not None, then the feature will be normalized by given
norm. If norm is None and self.norm is true, then we use lapacian degree norm.

Returns A tensor with shape (num_nodes, output_size)

class pgl.nn.conv.GATConv(input_size, hidden_size, feat_drop=0.6, attn_drop=0.6, num_heads=1,
concat=True, activation=None)

Bases: paddle.fluid.dygraph.layers.Layer

Implementation of graph attention networks (GAT)

This is an implementation of the paper GRAPH ATTENTION NETWORKS (https://arxiv.org/abs/1710.10903).

Parameters
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• input_size – The size of the inputs.

• hidden_size – The hidden size for gat.

• activation – (default None) The activation for the output.

• num_heads – (default 1) The head number in gat.

• feat_drop – (default 0.6) Dropout rate for feature.

• attn_drop – (default 0.6) Dropout rate for attention.

• concat – (default True) Whether to concat output heads or average them.

forward(graph, feature)

Parameters

• graph – pgl.Graph instance.

• feature – A tensor with shape (num_nodes, input_size)

Returns If concat=True then return a tensor with shape (num_nodes, hidden_size), else return
a tensor with shape (num_nodes, hidden_size * num_heads)

class pgl.nn.conv.APPNP(alpha=0.2, k_hop=10)
Bases: paddle.fluid.dygraph.layers.Layer

Implementation of APPNP of “Predict then Propagate: Graph Neural Networks meet Personalized PageRank”
(ICLR 2019).

Parameters

• k_hop – K Steps for Propagation

• alpha – The hyperparameter of alpha in the paper.

Returns A tensor with shape (num_nodes, hidden_size)

forward(graph, feature, norm=None)

Parameters

• graph – pgl.Graph instance.

• feature – A tensor with shape (num_nodes, input_size)

• norm – (default None). If norm is not None, then the feature will be normalized by given
norm. If norm is None, then we use lapacian degree norm.

Returns A tensor with shape (num_nodes, output_size)

class pgl.nn.conv.GCNII(hidden_size, activation=None, lambda_l=0.5, alpha=0.2, k_hop=10,
dropout=0.6)

Bases: paddle.fluid.dygraph.layers.Layer

Implementation of GCNII of “Simple and Deep Graph Convolutional Networks”

paper: https://arxiv.org/pdf/2007.02133.pdf

Parameters

• hidden_size – The size of inputs and outputs.

• activation – The activation for the output.

• k_hop – Number of layers for gcnii.

• lambda_l – The hyperparameter of lambda in the paper.
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• alpha – The hyperparameter of alpha in the paper.

• dropout – Feature dropout rate.

forward(graph, feature, norm=None)

Parameters

• graph – pgl.Graph instance.

• feature – A tensor with shape (num_nodes, input_size)

• norm – (default None). If norm is not None, then the feature will be normalized by given
norm. If norm is None, then we use lapacian degree norm.

Returns A tensor with shape (num_nodes, output_size)

class pgl.nn.conv.TransformerConv(input_size, hidden_size, num_heads=4, feat_drop=0.6,
attn_drop=0.6, concat=True, skip_feat=True, gate=False,
layer_norm=True, activation=’relu’)

Bases: paddle.fluid.dygraph.layers.Layer

forward(graph, feature, edge_feat=None)
Defines the computation performed at every call. Should be overridden by all subclasses.

Parameters

• *inputs (tuple) – unpacked tuple arguments

• **kwargs (dict) – unpacked dict arguments

reduce_attention(msg)

send_attention(src_feat, dst_feat, edge_feat)

send_recv(graph, q, k, v, edge_feat)

class pgl.nn.conv.GINConv(input_size, output_size, activation=None, init_eps=0.0,
train_eps=False)

Bases: paddle.fluid.dygraph.layers.Layer

Implementation of Graph Isomorphism Network (GIN) layer.

This is an implementation of the paper How Powerful are Graph Neural Networks? (https://arxiv.org/pdf/1810.
00826.pdf). In their implementation, all MLPs have 2 layers. Batch normalization is applied on every hidden
layer.

Parameters

• input_size – The size of input.

• output_size – The size of output.

• activation – The activation for the output.

• init_eps – float, optional Initial 𝜖 value, default is 0.

• train_eps – bool, optional if True, 𝜖 will be a learnable parameter.

forward(graph, feature)

Parameters

• graph – pgl.Graph instance.

• feature – A tensor with shape (num_nodes, input_size)

Returns A tensor with shape (num_nodes, output_size)
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class pgl.nn.conv.GraphSageConv(input_size, hidden_size, aggr_func=’sum’)
Bases: paddle.fluid.dygraph.layers.Layer

GraphSAGE is a general inductive framework that leverages node feature information (e.g., text attributes) to
efficiently generate node embeddings for previously unseen data.

Paper reference: Hamilton, Will, Zhitao Ying, and Jure Leskovec. “Inductive representation learning on large
graphs.” Advances in neural information processing systems. 2017.

Parameters

• input_size – The size of the inputs.

• hidden_size – The size of outputs

• aggr_func – (default “sum”) Aggregation function for GraphSage [“sum”, “mean”,
“max”, “min”].

forward(graph, feature, act=None)

Parameters

• graph – pgl.Graph instance.

• feature – A tensor with shape (num_nodes, input_size)

• act – (default None) Activation for outputs and before normalize.

Returns A tensor with shape (num_nodes, output_size)

class pgl.nn.conv.PinSageConv(input_size, hidden_size, aggr_func=’sum’)
Bases: paddle.fluid.dygraph.layers.Layer

PinSage combines efficient random walks and graph convolutions to generate embeddings of nodes (i.e., items)
that incorporate both graph structure as well as node feature information.

Paper reference: Ying, Rex, et al. “Graph convolutional neural networks for web-scale recommender systems.”
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
2018.

Parameters

• input_size – The size of the inputs.

• hidden_size – The size of outputs

• aggr_func – (default “sum”) Aggregation function for GraphSage [“sum”, “mean”,
“max”, “min”].

forward(graph, nfeat, efeat, act=None)

Parameters

• graph – pgl.Graph instance.

• nfeat – A tensor with shape (num_nodes, input_size)

• efeat – A tensor with shape (num_edges, 1) denotes edge weight.

• act – (default None) Activation for outputs and before normalize.

Returns A tensor with shape (num_nodes, output_size)
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Graph Pooling Layers

This package implements common pooling to help building graph neural networks.

class pgl.nn.pool.GraphPool
Bases: paddle.fluid.dygraph.layers.Layer

Implementation of graph pooling

This is an implementation of graph pooling

Parameters

• graph – the graph object from (Graph)

• feature – A tensor with shape (num_nodes, feature_size).

• pool_type – The type of pooling (“sum”, “mean” , “min”, “max”)

Returns A tensor with shape (num_graph, feature_size)

forward(graph, feature, pool_type)
Defines the computation performed at every call. Should be overridden by all subclasses.

Parameters

• *inputs (tuple) – unpacked tuple arguments

• **kwargs (dict) – unpacked dict arguments

9.9.5 pgl.nn.functional

Graph Level Function

pgl.nn.functional.graph_op.degree_norm(graph, mode=’indegree’)

9.9.6 pgl.dataset

This package implements some benchmark dataset for graph network and node representation learning.

class pgl.dataset.CitationDataset(name, symmetry_edges=True, self_loop=True)
Bases: object

Citation dataset helps to create data for citation dataset (Pubmed and Citeseer)

Parameters

• name – The name for the dataset (“pubmed” or “citeseer”)

• symmetry_edges – Whether to create symmetry edges.

• self_loop – Whether to contain self loop edges.

graph
The Graph data object

y
Labels for each nodes

num_classes
Number of classes.
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train_index
The index for nodes in training set.

val_index
The index for nodes in validation set.

test_index
The index for nodes in test set.

class pgl.dataset.CoraDataset(symmetry_edges=True, self_loop=True)
Bases: object

Cora dataset implementation

Parameters

• symmetry_edges – Whether to create symmetry edges.

• self_loop – Whether to contain self loop edges.

graph
The Graph data object

y
Labels for each nodes

num_classes
Number of classes.

train_index
The index for nodes in training set.

val_index
The index for nodes in validation set.

test_index
The index for nodes in test set.

class pgl.dataset.ArXivDataset(np_random_seed=123)
Bases: object

ArXiv dataset implementation

Parameters np_random_seed – The random seed for numpy.

graph
The Graph data object.

class pgl.dataset.BlogCatalogDataset(symmetry_edges=True, self_loop=False)
Bases: object

BlogCatalog dataset implementation

Parameters

• symmetry_edges – Whether to create symmetry edges.

• self_loop – Whether to contain self loop edges.

graph
The Graph data object.

num_groups
Number of classes.
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train_index
The index for nodes in training set.

test_index
The index for nodes in validation set.

class pgl.dataset.RedditDataset(normalize=True, symmetry=True)
Bases: object

9.9.7 pgl.message

The Message Implement for recv function

class pgl.message.Message(msg, segment_ids)
Bases: object

This implement Message for graph.recv.

Parameters

• msg – A dictionary provided by send function.

• segment_ids – The id that the message belongs to.

edge_expand(msg)
This is the inverse method for reduce.

Parameters feature (paddle.Tensor) – A reduced message.

Returns Returns a paddle.Tensor with the first dim the same as the num_edges.

Examples

import numpy as np
import pgl
import paddle

num_nodes = 5
edges = [ (0, 1), (1, 2), (3, 4)]
feature = np.random.randn(5, 100)
edge_feature = np.random.randn(3, 100)
graph = pgl.Graph(num_nodes=num_nodes,

edges=edges,
node_feat={

"feature": feature
},
edge_feat={

"edge_feature": edge_feature
})

graph.tensor()

def send_func(src_feat, dst_feat, edge_feat):
return { "out": src_feat["feature"] }

message = graph.send(send_func, src_feat={"feature": graph.node_feat["feature
→˓"]})

def recv_func(msg):

(continues on next page)
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(continued from previous page)

value = msg["out"]
max_value = msg.reduce_max(value)
# We want to subscribe the max_value correspond to the destination node.
max_value = msg.edge_expand(max_value)
value = value - max_value
return msg.reduce_sum(value)

out = graph.recv(recv_func, message)

reduce(msg, pool_type=’sum’)
This method reduce message by given pool_type.

Now, this method only supports default reduce function, with (‘sum’, ‘mean’, ‘max’, ‘min’).

Parameters

• feature (paddle.Tensor) – feature with first dim as num_edges.

• pool_type (str) – ‘sum’, ‘mean’, ‘max’, ‘min’ built-in receive function.

Returns Returns a paddle.Tensor with the first dim the same as the largest segment_id.

reduce_max(msg)
This method reduce message by max.

Parameters feature (paddle.Tensor) – feature with first dim as num_edges.

Returns Returns a paddle.Tensor with the first dim the same as the largest segment_id.

reduce_mean(msg)
This method reduce message by mean.

Parameters feature (paddle.Tensor) – feature with first dim as num_edges.

Returns Returns a paddle.Tensor with the first dim the same as the largest segment_id.

reduce_min(msg)
This method reduce message by min.

Parameters feature (paddle.Tensor) – feature with first dim as num_edges.

Returns Returns a paddle.Tensor with the first dim the same as the largest segment_id.

reduce_softmax(msg)
This method reduce message by softmax.

Parameters feature (paddle.Tensor) – feature with first dim as num_edges.

Returns Returns a paddle.Tensor with the first dim the same as the largest segment_id.

reduce_sum(msg)
This method reduce message by sum.

Parameters feature (paddle.Tensor) – feature with first dim as num_edges.

Returns Returns a paddle.Tensor with the first dim the same as the largest segment_id.
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TEN

THE TEAM

10.1 The Team

PGL is developed and maintained by NLP and Paddle Teams at Baidu

PGL is developed and maintained by NLP and Paddle Teams at Baidu
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CHAPTER

ELEVEN

LICENSE

PGL uses Apache License 2.0.
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